Do you want to publish a course? Click here

Improved Approximations for Multiprocessor Scheduling Under Uncertainty

238   0   0.0 ( 0 )
 Added by Jacob Scott
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

This paper presents improved approximation algorithms for the problem of multiprocessor scheduling under uncertainty, or SUU, in which the execution of each job may fail probabilistically. This problem is motivated by the increasing use of distributed computing to handle large, computationally intensive tasks. In the SUU problem we are given n unit-length jobs and m machines, a directed acyclic graph G of precedence constraints among jobs, and unrelated failure probabilities q_{ij} for each job j when executed on machine i for a single timestep. Our goal is to find a schedule that minimizes the expected makespan, which is the expected time at which all jobs complete. Lin and Rajaraman gave the first approximations for this NP-hard problem for the special cases of independent jobs, precedence constraints forming disjoint chains, and precedence constraints forming trees. In this paper, we present asymptotically better approximation algorithms. In particular, we give an O(loglog min(m,n))-approximation for independent jobs (improving on the previously best O(log n)-approximation). We also give an O(log(n+m) loglog min(m,n))-approximation algorithm for precedence constraints that form disjoint chains (improving on the previously best O(log(n)log(m)log(n+m)/loglog(n+m))-approximation by a (log n/loglog n)^2 factor when n = poly(m). Our algorithm for precedence constraints forming chains can also be used as a component for precedence constraints forming trees, yielding a similar improvement over the previously best algorithms for trees.



rate research

Read More

We present improved results for approximating maximum-weight independent set ($MaxIS$) in the CONGEST and LOCAL models of distributed computing. Given an input graph, let $n$ and $Delta$ be the number of nodes and maximum degree, respectively, and let $MIS(n,Delta)$ be the the running time of finding a emph{maximal} independent set ($MIS$) in the CONGEST model. Bar-Yehuda et al. [PODC 2017] showed that there is an algorithm in the CONGEST model that finds a $Delta$-approximation for $MaxIS$ in $O(MIS(n,Delta)log W)$ rounds, where $W$ is the maximum weight of a node in the graph, which can be as high as $poly (n)$. Whether their algorithm is deterministic or randomized depends on the $MIS$ algorithm that is used as a black-box. Our main result in this work is a randomized $(poly(loglog n)/epsilon)$-round algorithm that finds, with high probability, a $(1+epsilon)Delta$-approximation for $MaxIS$ in the CONGEST model. That is, by sacrificing only a tiny fraction of the approximation guarantee, we achieve an emph{exponential} speed-up in the running time over the previous best known result. Due to a lower bound of $Omega(sqrt{log n/log log n})$ that was given by Kuhn, Moscibroda and Wattenhofer [JACM, 2016] on the number of rounds for any (possibly randomized) algorithm that finds a maximal independent set (even in the LOCAL model) this result implies that finding a $(1+epsilon)Delta$-approximation for $MaxIS$ is exponentially easier than $MIS$.
The coflow scheduling problem has emerged as a popular abstraction in the last few years to study data communication problems within a data center. In this basic framework, each coflow has a set of communication demands and the goal is to schedule many coflows in a manner that minimizes the total weighted completion time. A coflow is said to complete when all its communication needs are met. This problem has been extremely well studied for the case of complete bipartite graphs that model a data center with full bisection bandwidth and several approximation algorithms and effective heuristics have been proposed recently. In this work, we study a slightly different model of coflow scheduling in general graphs (to capture traffic between data centers) and develop practical and efficient approximation algorithms for it. Our main result is a randomized 2 approximation algorithm for the single path and free path model, significantly improving prior work. In addition, we demonstrate via extensive experiments that the algorithm is practical, easy to implement and performs well in practice.
A fundamental problem in distributed computing is the task of cooperatively executing a given set of $t$ tasks by $p$ processors where the communication medium is dynamic and subject to failures. The dynamics of the communication medium lead to groups of processors being disconnected and possibly reconnected during the entire course of the computation furthermore tasks can have dependencies among them. In this paper, we present a randomized algorithm whose competitive ratio is dependent on the dynamics of the communication medium and also on the nature of the dependencies among the tasks.
The problem of attaining energy efficiency in distributed systems is of importance, but a general, non-domain-specific theory of energy-minimal scheduling is far from developed. In this paper, we classify the problems of energy-minimal scheduling and present theoretical foundations of the same. We derive results concerning energy-minimal scheduling of independent jobs in a distributed system with functionally similar machines with different working and idle power ratings. The machines considered in our system can have identical as well as different speeds. If the jobs can be divided into arbitrary parts, we show that the minimum-energy schedule can be generated in linear time and give exact scheduling algorithms. For the cases where jobs are non-divisible, we prove that the scheduling problems are NP-hard and also give approximation algorithms for the same along with their bounds.
For many years, Herlihys elegant computability based Consensus Hierarchy has been our best explanation of the relative power of various types of multiprocessor synchronization objects when used in deterministic algorithms. However, key to this hierarchy is treating synchronization instructions as distinct objects, an approach that is far from the real-world, where multiprocessor programs apply synchronization instructions to collections of arbitrary memory locations. We were surprised to realize that, when considering instructions applied to memory locations, the computability based hierarchy collapses. This leaves open the question of how to better capture the power of various synchronization instructions. In this paper, we provide an approach to answering this question. We present a hierarchy of synchronization instructions, classified by their space complexity in solving obstruction-free consensus. Our hierarchy provides a classification of combinations of known instructions that seems to fit with our intuition of how useful some are in practice, while questioning the effectiveness of others. We prove an essentially tight characterization of the power of buffered read and write instructions.Interestingly, we show a similar result for multi-location atomic assignments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا