No Arabic abstract
We present improved results for approximating maximum-weight independent set ($MaxIS$) in the CONGEST and LOCAL models of distributed computing. Given an input graph, let $n$ and $Delta$ be the number of nodes and maximum degree, respectively, and let $MIS(n,Delta)$ be the the running time of finding a emph{maximal} independent set ($MIS$) in the CONGEST model. Bar-Yehuda et al. [PODC 2017] showed that there is an algorithm in the CONGEST model that finds a $Delta$-approximation for $MaxIS$ in $O(MIS(n,Delta)log W)$ rounds, where $W$ is the maximum weight of a node in the graph, which can be as high as $poly (n)$. Whether their algorithm is deterministic or randomized depends on the $MIS$ algorithm that is used as a black-box. Our main result in this work is a randomized $(poly(loglog n)/epsilon)$-round algorithm that finds, with high probability, a $(1+epsilon)Delta$-approximation for $MaxIS$ in the CONGEST model. That is, by sacrificing only a tiny fraction of the approximation guarantee, we achieve an emph{exponential} speed-up in the running time over the previous best known result. Due to a lower bound of $Omega(sqrt{log n/log log n})$ that was given by Kuhn, Moscibroda and Wattenhofer [JACM, 2016] on the number of rounds for any (possibly randomized) algorithm that finds a maximal independent set (even in the LOCAL model) this result implies that finding a $(1+epsilon)Delta$-approximation for $MaxIS$ is exponentially easier than $MIS$.
This paper presents improved approximation algorithms for the problem of multiprocessor scheduling under uncertainty, or SUU, in which the execution of each job may fail probabilistically. This problem is motivated by the increasing use of distributed computing to handle large, computationally intensive tasks. In the SUU problem we are given n unit-length jobs and m machines, a directed acyclic graph G of precedence constraints among jobs, and unrelated failure probabilities q_{ij} for each job j when executed on machine i for a single timestep. Our goal is to find a schedule that minimizes the expected makespan, which is the expected time at which all jobs complete. Lin and Rajaraman gave the first approximations for this NP-hard problem for the special cases of independent jobs, precedence constraints forming disjoint chains, and precedence constraints forming trees. In this paper, we present asymptotically better approximation algorithms. In particular, we give an O(loglog min(m,n))-approximation for independent jobs (improving on the previously best O(log n)-approximation). We also give an O(log(n+m) loglog min(m,n))-approximation algorithm for precedence constraints that form disjoint chains (improving on the previously best O(log(n)log(m)log(n+m)/loglog(n+m))-approximation by a (log n/loglog n)^2 factor when n = poly(m). Our algorithm for precedence constraints forming chains can also be used as a component for precedence constraints forming trees, yielding a similar improvement over the previously best algorithms for trees.
We give a polynomial-time constant-factor approximation algorithm for maximum independent set for (axis-aligned) rectangles in the plane. Using a polynomial-time algorithm, the best approximation factor previously known is $O(loglog n)$. The results are based on a new form of recursive partitioning in the plane, in which faces that are constant-complexity and orthogonally convex are recursively partitioned into a constant number of such faces.
We study the maximum cardinality matching problem in a standard distributed setting, where the nodes $V$ of a given $n$-node network graph $G=(V,E)$ communicate over the edges $E$ in synchronous rounds. More specifically, we consider the distributed CONGEST model, where in each round, each node of $G$ can send an $O(log n)$-bit message to each of its neighbors. We show that for every graph $G$ and a matching $M$ of $G$, there is a randomized CONGEST algorithm to verify $M$ being a maximum matching of $G$ in time $O(|M|)$ and disprove it in time $O(D + ell)$, where $D$ is the diameter of $G$ and $ell$ is the length of a shortest augmenting path. We hope that our algorithm constitutes a significant step towards developing a CONGEST algorithm to compute a maximum matching in time $tilde{O}(s^*)$, where $s^*$ is the size of a maximum matching.
In this paper we study fractional coloring from the angle of distributed computing. Fractional coloring is the linear relaxation of the classical notion of coloring, and has many applications, in particular in scheduling. It was proved by Hasemann, Hirvonen, Rybicki and Suomela (2016) that for every real $alpha>1$ and integer $Delta$, a fractional coloring of total weight at most $alpha(Delta+1)$ can be obtained deterministically in a single round in graphs of maximum degree $Delta$, in the LOCAL model of computation. However, a major issue of this result is that the output of each vertex has unbounded size. Here we prove that even if we impose the more realistic assumption that the output of each vertex has constant size, we can find fractional colorings of total weight arbitrarily close to known tight bounds for the fractional chromatic number in several cases of interest. More precisely, we show that for any fixed $epsilon > 0$ and $Delta$, a fractional coloring of total weight at most $Delta+epsilon$ can be found in $O(log^*n)$ rounds in graphs of maximum degree $Delta$ with no $K_{Delta+1}$, while finding a fractional coloring of total weight at most $Delta$ in this case requires $Omega(log log n)$ rounds for randomized algorithms and $Omega( log n)$ rounds for deterministic algorithms. We also show how to obtain fractional colorings of total weight at most $2+epsilon$ in grids of any fixed dimension, for any $epsilon>0$, in $O(log^*n)$ rounds. Finally, we prove that in sparse graphs of large girth from any proper minor-closed family we can find a fractional coloring of total weight at most $2+epsilon$, for any $epsilon>0$, in $O(log n)$ rounds.
The anti-Ramsey number, $ar(G, H)$ is the minimum integer $k$ such that in any edge colouring of $G$ with $k$ colours there is a rainbow subgraph isomorphic to $H$, i.e., a copy of $H$ with each of its edges assigned a different colour. The notion was introduced by Erd{{o}}s and Simonovits in 1973. Since then the parameter has been studied extensively in combinatorics, also the particular case when $H$ is a star graph. Recently this case received the attention of researchers from the algorithm community because of its applications in interface modelling of wireless networks. To the algorithm community, the problem is known as maximum edge $q$-colouring problem. In this paper, we study the maximum edge $2$-colouring problem from the approximation algorithm point of view. The case $q=2$ is particularly interesting due to its application in real-life problems. Algorithmically, this problem is known to be NP-hard for $qge 2$. For the case of $q=2$, it is also known that no polynomial-time algorithm can approximate to a factor less than $3/2$ assuming the unique games conjecture. Feng et al. showed a $2$-approximation algorithm for this problem. Later Adamaszek and Popa presented a $5/3$-approximation algorithm with the additional assumption that the input graph has a perfect matching. Note that the obvious but the only known algorithm issues different colours to the edges of a maximum matching (say $M$) and different colours to the connected components of $G setminus M$. In this article, we give a new analysis of the aforementioned algorithm leading to an improved approximation bound for triangle-free graphs with perfect matching. We also show a new lower bound when the input graph is triangle-free. The contribution of the paper is a completely new, deeper and closer analysis of how the optimum achieves a higher number of colours than the matching based algorithm, mentioned above.