No Arabic abstract
For many years, Herlihys elegant computability based Consensus Hierarchy has been our best explanation of the relative power of various types of multiprocessor synchronization objects when used in deterministic algorithms. However, key to this hierarchy is treating synchronization instructions as distinct objects, an approach that is far from the real-world, where multiprocessor programs apply synchronization instructions to collections of arbitrary memory locations. We were surprised to realize that, when considering instructions applied to memory locations, the computability based hierarchy collapses. This leaves open the question of how to better capture the power of various synchronization instructions. In this paper, we provide an approach to answering this question. We present a hierarchy of synchronization instructions, classified by their space complexity in solving obstruction-free consensus. Our hierarchy provides a classification of combinations of known instructions that seems to fit with our intuition of how useful some are in practice, while questioning the effectiveness of others. We prove an essentially tight characterization of the power of buffered read and write instructions.Interestingly, we show a similar result for multi-location atomic assignments.
This paper presents improved approximation algorithms for the problem of multiprocessor scheduling under uncertainty, or SUU, in which the execution of each job may fail probabilistically. This problem is motivated by the increasing use of distributed computing to handle large, computationally intensive tasks. In the SUU problem we are given n unit-length jobs and m machines, a directed acyclic graph G of precedence constraints among jobs, and unrelated failure probabilities q_{ij} for each job j when executed on machine i for a single timestep. Our goal is to find a schedule that minimizes the expected makespan, which is the expected time at which all jobs complete. Lin and Rajaraman gave the first approximations for this NP-hard problem for the special cases of independent jobs, precedence constraints forming disjoint chains, and precedence constraints forming trees. In this paper, we present asymptotically better approximation algorithms. In particular, we give an O(loglog min(m,n))-approximation for independent jobs (improving on the previously best O(log n)-approximation). We also give an O(log(n+m) loglog min(m,n))-approximation algorithm for precedence constraints that form disjoint chains (improving on the previously best O(log(n)log(m)log(n+m)/loglog(n+m))-approximation by a (log n/loglog n)^2 factor when n = poly(m). Our algorithm for precedence constraints forming chains can also be used as a component for precedence constraints forming trees, yielding a similar improvement over the previously best algorithms for trees.
We propose a simple channel-allocation method based on tug-of-war (TOW) dynamics, combined with the time scheduling based on nonlinear oscillator synchronization to efficiently use of the space (channel) and time resources in wireless communications. This study demonstrates that synchronization groups, where each node selects a different channel, are non-uniformly distributed in phase space such that every distance between groups is larger than the area of influence. New type of self-organized spatiotemporal patterns can be formed for resource allocation according to channel rewards.
Web applications frequently leverage resources made available by remote web servers. As resources are created, updated, deleted, or moved, these applications face challenges to remain in lockstep with the servers change dynamics. Several approaches exist to help meet this challenge for use cases where good enough synchronization is acceptable. But when strict resource coverage or low synchronization latency is required, commonly accepted Web-based solutions remain elusive. This paper details characteristics of an approach that aims at decreasing synchronization latency while maintaining desired levels of accuracy. The approach builds on pushing change notifications and pulling changed resources and it is explored with an experiment based on a DBpedia Live instance.
Understanding the bottlenecks in implementing stochastic gradient descent (SGD)-based distributed support vector machines (SVM) algorithm is important in training larger data sets. The communication time to do the model synchronization across the parallel processes is the main bottleneck that causes inefficiency in the training process. The model synchronization is directly affected by the mini-batch size of data processed before the global synchronization. In producing an efficient distributed model, the communication time in training model synchronization has to be as minimum as possible while retaining a high testing accuracy. The effect from model synchronization frequency over the convergence of the algorithm and accuracy of the generated model must be well understood to design an efficient distributed model. In this research, we identify the bottlenecks in model synchronization in parallel stochastic gradient descent (PSGD)-based SVM algorithm with respect to the training model synchronization frequency (MSF). Our research shows that by optimizing the MSF in the data sets that we used, a reduction of 98% in communication time can be gained (16x - 24x speed up) with respect to high-frequency model synchronization. The training model optimization discussed in this paper guarantees a higher accuracy than the sequential algorithm along with faster convergence.
In this ongoing work, we are interested in multiprocessor energy efficient systems, where task durations are not known in advance, but are know stochastically. More precisely, we consider global scheduling algorithms for frame-based multiprocessor stochastic DVFS (Dynamic Voltage and Frequency Scaling) systems. Moreover, we consider processors with a discrete set of available frequencies.