No Arabic abstract
The Alpha Magnetic Spectrometer (AMS) to be installed on the International Space Station (ISS) will be equipped with a proximity Ring Imaging Cherenkov (RICH) detector for measuring the velocity and electric charge of the charged cosmic particles. This detector will contribute to the high level of redundancy required for AMS as well as to the rejection of albedo particles. Charge separation up to iron and a velocity resolution of the order of 0.1% for singly charged particles are expected. A RICH protoptype consisting of a detection matrix with 96 photomultiplier units, a segment of a conical mirror and samples of the radiator materials was built and its performance was evaluated. Results from the last test beam performed with ion fragments resulting from the collision of a 158 GeV/c/nucleon primary beam of indium ions (CERN SPS) on a lead target are reported. The large amount of collected data allowed to test and characterize different aerogel samples and the sodium fluoride radiator. In addition, the reflectivity of the mirror was evaluated. The data analysis confirms the design goals.
The Alpha Magnetic Spectrometer (AMS) experiment to be installed on the International Space Station (ISS) will be equipped with a proximity focusing Ring Imaging Cherenkov (RICH) detector for measuring the electric charge and velocity of the charged cosmic particles. A RICH prototype consisting of 96 photomultiplier units, including a piece of the conical reflector, was built and its performance evaluated with ion beam data. Preliminary results of the in-beam tests performed with ion fragments resulting from collisions of a 158 GeV/c/nuc primary beam of Indium ions (CERN SPS) on a Pb target are reported. The collected data included tests to the final front-end electronics and to different aerogel radiators. Cherenkov rings for a large range of charged nuclei and with reflected photons were observed. The data analysis confirms the design goals. Charge separation up to Fe and velocity resolution of the order of 0.1% for singly charged particles are obtained.
A Ring Imaging v{C}erenkov detector built for the BRAHMS experiment at the Brookhaven RHIC is described. This detector has a high index of refraction gas radiator. v{C}erenkov light is focused on a photo-multiplier based photon detector with a large spherical mirror. The combination of momentum and ring radius measurement provides particle identification from 2.5 GeV/c up to 35 GeV/c for pions and kaons and well above 40 GeV/c for protons during runs that had the radiator index of refraction set at $n-1=1700 times 10^{-6}$.
Gas detector are very light instrument used in high energy physics to measure the particle properties: position and momentum. Through high electric field is possible to use the Gas Electron Multiplier (GEM) technology to detect the charged particles
A study prototype of Proximity Focussing Ring Imaging Cherenkov counter has been built and tested with several radiators using separately cosmic-ray particles and 12C beam fragmentation products at several energies. Counter prototype and experimental setup are described, and the results of measurements reported and compared with simulation results.The performances are discussed in the perspective of the final counter design.
A cylindrical GEM detector is under development, to serve as an upgraded inner tracker at the BESIII spectrometer. It will consist of three layers of cylindrically-shaped triple GEMs surrounding the interaction point. The experiment is taking data at the e+e- collider BEPCII in Beijing (China) and the GEM tracker will be installed in 2018. Tests on the performances of triple GEMs in strong magnetic field have been run by means of the muon beam available in the H4 line of SPS (CERN) with both planar chambers and the first cylindrical prototype. Efficiencies and resolutions have been evaluated using different gains, gas mixtures, with and without magnetic field. The obtained efficiency is 97-98% on single coordinate view, in many operational arrangements. The spatial resolution for planar GEMs has been evaluated with two different algorithms for the position determination: the charge centroid and the micro time projection chamber (mu-TPC) methods. The two modes are complementary and are able to cope with the asymmetry of the electron avalanche when running in magnetic field, and with non-orthogonal incident tracks. With the charge centroid, a resolution lower than 100 micron has been reached without magnetic field and lower than 200 micron with a magnetic field up to 1 T. The mu-TPC mode showed to be able to improve those results. In the first beam test with the cylindrical prototype, the detector had a very good stability under different voltage configurations and particle intensities. The resolution evaluation is in progress.