Do you want to publish a course? Click here

The Ring Imaging Cherenkov detector (RICH) of the AMS experiment

69   0   0.0 ( 0 )
 Added by Fernando Barao
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Alpha Magnetic Spectrometer (AMS) experiment to be installed on the International Space Station (ISS) will be equipped with a proximity focusing Ring Imaging Cherenkov (RICH) detector for measuring the electric charge and velocity of the charged cosmic particles. A RICH prototype consisting of 96 photomultiplier units, including a piece of the conical reflector, was built and its performance evaluated with ion beam data. Preliminary results of the in-beam tests performed with ion fragments resulting from collisions of a 158 GeV/c/nuc primary beam of Indium ions (CERN SPS) on a Pb target are reported. The collected data included tests to the final front-end electronics and to different aerogel radiators. Cherenkov rings for a large range of charged nuclei and with reflected photons were observed. The data analysis confirms the design goals. Charge separation up to Fe and velocity resolution of the order of 0.1% for singly charged particles are obtained.



rate research

Read More

The Alpha Magnetic Spectrometer (AMS) to be installed on the International Space Station (ISS) will be equipped with a proximity Ring Imaging Cherenkov (RICH) detector for measuring the velocity and electric charge of the charged cosmic particles. This detector will contribute to the high level of redundancy required for AMS as well as to the rejection of albedo particles. Charge separation up to iron and a velocity resolution of the order of 0.1% for singly charged particles are expected. A RICH protoptype consisting of a detection matrix with 96 photomultiplier units, a segment of a conical mirror and samples of the radiator materials was built and its performance was evaluated. Results from the last test beam performed with ion fragments resulting from the collision of a 158 GeV/c/nucleon primary beam of indium ions (CERN SPS) on a lead target are reported. The large amount of collected data allowed to test and characterize different aerogel samples and the sodium fluoride radiator. In addition, the reflectivity of the mirror was evaluated. The data analysis confirms the design goals.
A Ring Imaging v{C}erenkov detector built for the BRAHMS experiment at the Brookhaven RHIC is described. This detector has a high index of refraction gas radiator. v{C}erenkov light is focused on a photo-multiplier based photon detector with a large spherical mirror. The combination of momentum and ring radius measurement provides particle identification from 2.5 GeV/c up to 35 GeV/c for pions and kaons and well above 40 GeV/c for protons during runs that had the radiator index of refraction set at $n-1=1700 times 10^{-6}$.
The Alpha Magnetic Spectrometer (AMS), to be installed on the International Space Station (ISS) in 2008, is a cosmic ray detector with several subsystems, one of which is a proximity focusing Ring Imaging Cherenkov (RICH) detector. This detector will be equipped with a dual radiator (aerogel+NaF), a lateral conical mirror and a detection plane made of 680 photomultipliers and light guides, enabling precise measurements of particle electric charge and velocity. Combining velocity measurements with data on particle rigidity from the AMS Tracker it is possible to obtain a measurement for particle mass, allowing the separation of isotopes. A Monte Carlo simulation of the RICH detector, based on realistic properties measured at ion beam tests, was performed to evaluate isotope separation capabilities. Results for three elements -- H (Z=1), He (Z=2) and Be (Z=4) -- are presented.
The Alpha Magnetic Spectrometer (AMS) to be installed on the International Space Station (ISS) will be equipped with a proximity focusing Ring Imaging Cerenkov detector (RICH). Reconstruction of the Cerenkov angle and the electric charge with RICH are discussed. A likelihood method for the Cerenkov angle reconstruction was applied leading to a velocity determination for protons with a resolution around 0.1%. The electric charge reconstruction is based on the counting of the number of photoelectrons and on an overall efficiency estimation on an event-by-event basis. The isotopic mass separation of helium and beryllium is presented.
The Alpha Magnetic Spectrometer (AMS), whose final version AMS-02 is to be installed on the International Space Station (ISS) for at least 3 years, is a detector designed to measure charged cosmic ray spectra with energies up to the TeV region and with high energy photon detection capability up to a few hundred GeV. It is equipped with several subsystems, one of which is a proximity focusing RICH detector with a dual radiator (aerogel+NaF) that provides reliable measurements for particle velocity and charge. The assembly and testing of the AMS RICH is currently being finished and the full AMS detector is expected to be ready by the end of 2008. The RICH detector of AMS-02 is presented. Physics prospects are briefly discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا