Do you want to publish a course? Click here

Experimental study of a proximity focusing Cherenkov counter prototype for the AMS experiment

92   0   0.0 ( 0 )
 Added by Buenerd
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

A study prototype of Proximity Focussing Ring Imaging Cherenkov counter has been built and tested with several radiators using separately cosmic-ray particles and 12C beam fragmentation products at several energies. Counter prototype and experimental setup are described, and the results of measurements reported and compared with simulation results.The performances are discussed in the perspective of the final counter design.



rate research

Read More

The AMS spectrometer will be installed on the International Space Station at the end of 2003. Among other improvements over the first version of the instrument, a ring imaging Cherenkov detector (RICH) will be added which latter should open a new window for cosmic-ray physics, allowing isotope separation up to A~25 between 1 and 10 GeV/c and elements identification up to Z~25 between threshold and 1 TeV/c/nucleon. It should also contribute to the high level of redundancy required for AMS and reject efficiency albedo particles. The results of the first generation prototype and the expected results of the new one are discussed.
94 - D. Barancourt 2000
The Alpha Magnetic Spectrometer in a precursor version (AMS-01), was flown in June 1998 on a 51.6 degrees orbit and at altitudes ranging between 320 and 390 km, on board of the space shuttle Discovery (flight STS-91). AMS-01 included an Aerogel Threshold Cherenkov counter (ATC) to separate antiprotons from electrons and positrons from protons, for momenta below 3.5 GeV/c. This paper presents a description of the ATC counter and reports on its performances during the flight STS-91.
The Alpha Magnetic Spectrometer (AMS) to be installed on the International Space Station (ISS) will be equipped with a proximity Ring Imaging Cherenkov (RICH) detector for measuring the velocity and electric charge of the charged cosmic particles. This detector will contribute to the high level of redundancy required for AMS as well as to the rejection of albedo particles. Charge separation up to iron and a velocity resolution of the order of 0.1% for singly charged particles are expected. A RICH protoptype consisting of a detection matrix with 96 photomultiplier units, a segment of a conical mirror and samples of the radiator materials was built and its performance was evaluated. Results from the last test beam performed with ion fragments resulting from the collision of a 158 GeV/c/nucleon primary beam of indium ions (CERN SPS) on a lead target are reported. The large amount of collected data allowed to test and characterize different aerogel samples and the sodium fluoride radiator. In addition, the reflectivity of the mirror was evaluated. The data analysis confirms the design goals.
A combination Time Projection Chamber-Cherenkov prototype detector has been developed as part of the Detector R&D Program for a future Electron Ion Collider. The prototype was tested at the Fermilab test beam facility to provide a proof of principle to demonstrate that the detector is able to measure particle tracks and provide particle identification information within a common detector volume. The TPC portion consists of a 10x10x10cm3 field cage, which delivers charge from tracks to a 10x10cm2 quadruple GEM readout. Tracks are reconstructed by interpolating the hit position of clusters on an array of 2x10mm2 zigzag pads The Cherenkov component consists of a 10x10cm2 readout plane segmented into 3x3 square pads, also coupled to a quadruple GEM. As tracks pass though the drift volume of the TPC, the generated Cherenkov light is able to escape through sparsely arranged wires making up one side of the field cage, facing the CsI photocathode of the Cherenkov detector. The Cherenkov detector is thus operated in a windowless, proximity focused configuration for high efficiency. Pure CF4 is used as the working gas for both detector components, mainly due to its transparency into the deep UV, as well as its high N0. Results from the beam test, as well as results on its particle id capabilities will be discussed.
A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c up to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Laboratory. The adopted solution foresees a novel hybrid optics design based on aerogel radiator, composite mirrors and high-packed and high-segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). We report here the results of the tests of a large scale prototype of the RICH detector performed with the hadron beam of the CERN T9 experimental hall for the direct detection configuration. The tests demonstrated that the proposed design provides the required pion-to-kaon rejection factor of 1:500 in the whole momentum range.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا