Do you want to publish a course? Click here

The annealing induced extraordinary properties of SI based ZNO film grown by RF sputtering

105   0   0.0 ( 0 )
 Publication date 2007
and research's language is English




Ask ChatGPT about the research

Pb(Zr0.52Ti0.48)O3 (PZT) thin films were in situ deposited by pulsed laser deposition (PLD) on Pt/Ti/SiO2/Si substrates using a template layer derived by sol-gel method. A 0.1-$mu$m-thick PZT layer with (111) or (100)-preferred orientation was first deposited onto Pt/Ti/SiO2/Si substrates using the sol-gel method, and than a PZT layer with thickness of 1$mu$m was in situ deposited by PLD on the above-mentioned PZT layer. The crystalline phases and the preferred orientations of the PZT films were investigated by X-ray diffraction analysis. Surface and cross-sectional morphologies were observed by scanning electron microscopy and transmission electron microscopy. The electrical properties of the films were evaluated by measuring their P-E hysteresis loops and dielectric constants. The preferred orientation of the films can be controlled using the template layer derived by the sol-gel method. The deposition temperature required to obtain the perovskite phase in this process is approximately 460 degrees C, and is significantly lower than that in the case of direct film deposition by PLD on the Pt/Ti/SiO2/Si substrates. Keywords: lead zirconate titanate (PZT), thin film, sol-gel method, laser ablation, electrical properties



rate research

Read More

We have investigated the correlation between structural and transport properties in sputtered $beta$-FeSe films grown onto SrTiO$_3$ (100). The growth parameters, such as substrate temperature and thickness, have been varied in order to explore different regimes. In the limit of textured thick films, we found promising features like an enhanced $T_{rm c}sim12,$K, a relatively high $H_{rm c2}$ and a low anisotropy. By performing magnetoresistance and Hall coefficient measurements, we investigate the influence of the disorder associated with the textured morphology on some features attributed to subtle details of the multi-band electronic structure of $beta$-FeSe. Regarding the superconductor-insulator transition (SIT) induced by reducing the thickness, we found a non-trivial evolution of the structural properties and morphology associated with a strained initial growth and the coalescence of grains. Finally, we discuss the origin of the insulating behavior in high-quality stressed epitaxial thin films. We found that a lattice distortion, described by the Poissons coefficient associated with the lattice parameters textit{a} and textit{c}, may play a key role.
X-ray absorption near-edge spectroscopy (XANES), photoluminescence, cathodoluminescence and Raman spectroscopy have been used to investigate the chemical states of nitrogen dopants in ZnO nanowires. It is found that nitrogen exists in multiple states: NO, NZn and loosely bound N2 molecule. The work establishes a direct link between a donor-acceptor pair (DAP) emission at 3.232 eV and the concentration of loosely bound N2. These results confirm that N2 at Zn site is a potential candidate for producing a shallow acceptor state in N-doped ZnO as theoretically predicted by Lambrecht and Boonchun [Phys. Rev. B 87, 195207 (2013)]. Additionally, shallow acceptor states arising from NO complexes have been ruled out in this study.
10 nm and 50 nm Co$_{2}$FeAl (CFA) thin films have been deposited on MgO(001) and Si(001) substrates by magnetron sputtering and annealed at different temperatures. X-rays diffraction revealed polycrystalline or epitaxial growth (according to the relation CFA(001)[110]//MgO(001)[100] epitaxial relation), respectively for CFA films grown on a Si and on a MgO substrate. For these later, the chemical order varies from the A2 phase to the B2 phase when increasing the annealing temperature (Ta) while only the A2 disorder type has been observed for CFA grown on Si. Microstrip ferromagnetic resonance (MS-FMR) measurements revealed that the in-plane anisotropy results from the superposition of a uniaxial and of a fourfold symmetry term for CFA grown on MgO substrates. This fourfold anisotropy, which disappears completely for samples grown on Si, is in accord with the crystal structure of the samples. The fourfold anisotropy field decreases when increasing Ta while the uniaxial anisotropy field is nearly unaffected by Ta within the investigated range. The MS-FMR data also allow for concluding that the gyromagnetic factor remains constant and that the exchange stiffness constant increases with $T_{a}$. Finally, the FMR linewidth decreases when increasing Ta, due to the enhancement of the chemical order. We derive a very low intrinsic damping parameter (1.3*10^-3 and 1.1*10^-3 for films of 50 nm thickness annealed at 615 {deg}C grown on MgO and on Si, respectively).
In this work, amorphous thin films in Mg-Si-O-N system were prepared in order to investigate the dependence of optical and mechanical properties on Mg composition. Reactive RF magnetron co-sputtering from magnesium and silicon targets were used for the deposition of Mg-Si-O-N thin films. Films were deposited on float glass, silica wafers and sapphire substrates in an Ar, N2 and O2 gas mixture. X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, spectroscopic ellipsometry, and nanoindentation were employed to characterize the composition, surface morphology, and properties of the films.
Despite many efforts the origin of a ferromagnetic (FM) response in ZnMnO and ZnCoO is still not clear. Magnetic investigations of our samples, not discussed here, show that the room temperature FM response is observed only in alloys with a non-uniform Mn or Co distribution. Thus, the control of their distribution is crucial for explanation of contradicted magnetic properties of ZnCoO and ZnMnO reported till now. In the present review we discuss advantages of the Atomic Layer Deposition (ALD) growth method, which enables us to control uniformity of ZnMnO and ZnCoO alloys. Properties of ZnO, ZnMnO and ZnCoO films grown by the ALD are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا