Do you want to publish a course? Click here

Co2FeAl Heusler thin films grown on Si and MgO substrates: annealing temperature effect

121   0   0.0 ( 0 )
 Added by Fatih Zighem
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

10 nm and 50 nm Co$_{2}$FeAl (CFA) thin films have been deposited on MgO(001) and Si(001) substrates by magnetron sputtering and annealed at different temperatures. X-rays diffraction revealed polycrystalline or epitaxial growth (according to the relation CFA(001)[110]//MgO(001)[100] epitaxial relation), respectively for CFA films grown on a Si and on a MgO substrate. For these later, the chemical order varies from the A2 phase to the B2 phase when increasing the annealing temperature (Ta) while only the A2 disorder type has been observed for CFA grown on Si. Microstrip ferromagnetic resonance (MS-FMR) measurements revealed that the in-plane anisotropy results from the superposition of a uniaxial and of a fourfold symmetry term for CFA grown on MgO substrates. This fourfold anisotropy, which disappears completely for samples grown on Si, is in accord with the crystal structure of the samples. The fourfold anisotropy field decreases when increasing Ta while the uniaxial anisotropy field is nearly unaffected by Ta within the investigated range. The MS-FMR data also allow for concluding that the gyromagnetic factor remains constant and that the exchange stiffness constant increases with $T_{a}$. Finally, the FMR linewidth decreases when increasing Ta, due to the enhancement of the chemical order. We derive a very low intrinsic damping parameter (1.3*10^-3 and 1.1*10^-3 for films of 50 nm thickness annealed at 615 {deg}C grown on MgO and on Si, respectively).



rate research

Read More

The correlation between magnetic and structural properties of Co_{2} FeAl (CFA) thin films of different thickness (10 nm<d< 100 nm) grown at room temperature on MgO-buffered Si/SiO2 substrates and annealed at 600lyxmathsym{textdegree}C has been studied. XRD measurements revealed an (011) out-of-plane texture growth of the films. The deduced lattice parameter increases with the film thickness. Moreover, pole figures showed no in-plane preferential growth orientation. The magneto-optical Kerr effect hysteresis loops showed the presence of a weak in-plane uniaxial anisotropy with a random easy axis direction. The coercive field measured with an applied field along the easy axis direction and the uniaxial anisotropy field increase linearly with the inverse of the CFA thickness. The microstrip line ferromagnetic resonance measurements for in-plane and perpendicular applied magnetic fields revealed that the effective magnetization and the uniaxial in-palne anisotropy field follow a linear variation versus the inverse CFA thickness. This allows deriving a perpendicular surface anisotropy coefficient of -1.86 erg/cm2
Co2FeAl (CFA) thin films with thickness varying from 10 nm to 115 nm have been deposited on MgO(001) substrates by magnetron sputtering and then capped by Ta or Cr layer. X-rays diffraction (XRD) revealed that the cubic $[001]$ CFA axis is normal to the substrate and that all the CFA films exhibit full epitaxial growth. The chemical order varies from the $B2$ phase to the $A2$ phase when decreasing the thickness. Magneto-optical Kerr effect (MOKE) and vibrating sample magnetometer measurements show that, depending on the field orientation, one or two-step switchings occur. Moreover, the films present a quadratic MOKE signal increasing with the CFA thickness, due to the increasing chemical order. Ferromagnetic resonance, MOKE transverse bias initial inverse susceptibility and torque (TBIIST) measurements reveal that the in-plane anisotropy results from the superposition of a uniaxial and of a fourfold symmetry term. The fourfold anisotropy is in accord with the crystal structure of the samples and is correlated to the biaxial strain and to the chemical order present in the films. In addition, a large negative perpendicular uniaxial anisotropy is observed. Frequency and angular dependences of the FMR linewidth show two magnon scattering and mosaicity contributions, which depend on the CFA thickness. A Gilbert damping coefficient as low as 0.0011 is found.
We correlate simultaneously recorded magnetotransport and spatially resolved magneto optical Kerr effect (MOKE) data in Co2FeAl Heusler compound thin films micropatterned into Hall bars. Room temperature MOKE images reveal the nucleation and propagation of domains in an externally applied magnetic field and are used to extract a macrospin corresponding to the mean magnetization direction in the Hall bar. The anisotropic magnetoresistance calculated using this macrospin is in excellent agreement with magnetoresistance measurements. This suggests that the magnetotransport in Heusler compounds can be adequately simulated using simple macrospin models, while the magnetoresistance contribution due to domain walls is of negligible importance.
492 - A. Muller 2009
Magnetite thin fims have been grown epitaxially on ZnO and MgO substrates using molecular beam epitaxy. The film quality was found to be strongly dependent on the oxygen partial pressure during growth. Structural, electronic, and magnetic properties were analyzed utilizing Low Energy Electron Diffraction (LEED), HArd X-ray PhotoElectron Spectroscopy (HAXPES), Magneto Optical Kerr Effect (MOKE), and X-ray Magnetic Circular Dichroism (XMCD). Diffraction patterns show clear indication for growth in the (111) direction on ZnO. Vertical structure analysis by HAXPES depth profiling revealed uniform magnetite thin films on both type of substrates. Both, MOKE and XMCD measurements show in-plane easy magnetization with a reduced magnetic moment in case of the films on ZnO.
Whether {alpha}double prime-Fe16N2 possesses a giant saturation magnetization (Ms) has been a daunting problem among magnetic researchers for almost 40 years, mainly due to the unshakable faith of famous Slater-Pauling (SP) curve and poor consistency on evaluating its Ms. Here we demonstrate that, using epitaxy and mis-fit strain imposed by an underlying substrate, the in-plane lattice constant of Fe16N2 thin films can be fine tuned to create favorable conditions for exceptionally large saturation magnetization. Combined study using polarized neutron reflectometry and X-ray diffraction shows that with increasing strain at the interface the Ms of these film can be changed over a broad range, from ~2.1T (non-high Ms) up to ~3.1T (high Ms). We suggest that the equilibrium in-plane lattice constant of Fe16N2 sits in the vicinity of the spin crossover point, in which a transition between low spin to high spin configuration of Fe sites can be realized with sensitive adjustment of crystal structure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا