No Arabic abstract
We have investigated the correlation between structural and transport properties in sputtered $beta$-FeSe films grown onto SrTiO$_3$ (100). The growth parameters, such as substrate temperature and thickness, have been varied in order to explore different regimes. In the limit of textured thick films, we found promising features like an enhanced $T_{rm c}sim12,$K, a relatively high $H_{rm c2}$ and a low anisotropy. By performing magnetoresistance and Hall coefficient measurements, we investigate the influence of the disorder associated with the textured morphology on some features attributed to subtle details of the multi-band electronic structure of $beta$-FeSe. Regarding the superconductor-insulator transition (SIT) induced by reducing the thickness, we found a non-trivial evolution of the structural properties and morphology associated with a strained initial growth and the coalescence of grains. Finally, we discuss the origin of the insulating behavior in high-quality stressed epitaxial thin films. We found that a lattice distortion, described by the Poissons coefficient associated with the lattice parameters textit{a} and textit{c}, may play a key role.
Our recent years studies of the prototypal FeSe and molecule-intercalated (Li,Fe)OHFeSe superconductor systems are briefly reviewed here, with emphasis on experimental observations of the link between the superconductivity and normal-state electronic property in the single crystals and films. These samples were successfully synthesized by our recently developed soft-chemical hydrothermal methods, which are also briefly described. Particularly in the Mn-doped high-Tc (Li,Fe)OHFeSe film, a strong enhancement of the superconducting critical current density was achieved, which is promising for practical application of the superconductivity.
The issue concerning the nature and the role of microstructural inhomogeneities in iron chalcogenide superconducting crystals of FeTe0.65Se0.35 and their correlation with transport properties of this system was addressed. Presented data demonstrate that chemical disorder originating from the kinetics of the crystal growth process significantly influences the superconducting properties of an Fe-Te-Se system. Transport measurements of the transition temperature and critical current density performed for microscopic bridges allow us to deduce the local properties of a superconductor with microstructural inhomogeneities, and significant differences were noted. The variances observed in the local properties were explained as a consequence of weak superconducting links existing in the studied crystals. The results confirm that inhomogeneous spatial distribution of ions and small hexagonal symmetry nanoscale regions with nanoscale phase separation also seem to enhance the superconductivity in this system with respect to the values of the critical current density. Magnetic measurements confirm the conclusions drawn from the transport measurements.
We report on transport properties of grain boundaries fabricated in YBa2Cu3O7-x thin films grown by the liquid phase epitaxy (LPE) technique on MgO asymmetrical bicrystal substrate with 45o misorientation angle. In total around 10 samples have been studied. Substantial scatter of zero field values of the critical current density at 5K has been observed. The upper limit of Jc of the order of 104 A/cm2 found in our study is close to previously reported data for 45o bicrystals grown by various physical vapour deposition methods while the minimal value of Jc for the LPE grown bicrystals in striking difference to the results published before is exactly equal to zero. For samples with non-zero Jc we have found a few different types of critical current dependence on magnetic field ranging from pattern reminiscent Fraunhover-like Ic(H) to Ic(H) profile with Ic minimum at zero field.
We report scanning tunnelling microscopy and spectroscopy (STM/STS) studies on one and two unit cell (UC) high FeSe thin films grown on Bi$_2$Se$_3$(0001). In our thin films, we find the tetragonal phase of FeSe and dumb-bell shaped defects oriented along Se-Se bond directions. In addition, we observe striped moire patterns with a periodicity of ($7.3pm 0.1$) nm generated by the mismatch between the FeSe lattice and the Bi$_2$Se$_3$ lattice. We could not find any signature of a superconducting gap in the tunneling spectra measured on the surface of one and two UC thick islands of FeSe down to 6.5 K. The spectra rather show an asymmetric behavior across and a finite density of states at the Fermi level ($E_F$) resembling those taken in the normal state of bulk FeSe.
NdFeAs(O,F) thin films having different fluorine contents were grown on 5 deg. or 10 deg. vicinal cut MgO and CaF2 single crystalline substrates by molecular beam epitaxy. Structural characterisations by reflection high-energy electron diffraction and x-ray diffraction confirmed the epitaxial growth of NdFeAs(O,F). The resistivities of the ab-plane and along the c-axis were derived from the resistivity measurements in the longitudinal and transversal directions. The c-axis resistivity was always higher than the ab-plane resistivity, resulting from the anisotropic electronic structure. The resistivity anisotropy at 300 K was almost constant in the range of 50-90 irrespective of the F content. On the other hand, the resistivity anisotropy at 56 K showed a strong fluorine dependence: the resistivity anisotropy was over 200 for the films with optimum F contents (superconducting transition temperature Tc around 50 K), whereas the resistivity anisotropy was around 70 for the films in the under-doped regime (Tc between 35 and 45 K). The mass anisotropy are the effective masses along the c-axis and on the ab-plane) close to Tc derived from the anisotropic Ginzburg-Landau approach using the angular-dependency of the ab-plane resistivity was in the range from 2 to 5. On the assumption that the square of the mass anisotropy is equal to the resistivity anisotropy, those values are small compared to the normal state anisotropy.