Do you want to publish a course? Click here

An Integrated Design and Verification Methodology for Reconfigurable Multimedia Systems

182   0   0.0 ( 0 )
 Publication date 2007
and research's language is English




Ask ChatGPT about the research

Recently a lot of multimedia applications are emerging on portable appliances. They require both the flexibility of upgradeable devices (traditionally software based) and a powerful computing engine (typically hardware). In this context, programmable HW and dynamic reconfiguration allow novel approaches to the migration of algorithms from SW to HW. Thus, in the frame of the Symbad project, we propose an industrial design flow for reconfigurable SoCs. The goal of Symbad consists of developing a system level design platform for hardware and software SoC systems including formal and semi-formal verification techniques.



rate research

Read More

113 - Jan Mikac 2008
In this paper, we propose an export architecture that provides a clear separation of authoring services from publication services. We illustrate this architecture with the LimSee3 authoring tool and several standard publication formats: Timesheets, SMIL, and XHTML.
Due to the rapid development of mobile Internet techniques, cloud computation and popularity of online social networking and location-based services, massive amount of multimedia data with geographical information is generated and uploaded to the Internet. In this paper, we propose a novel type of cross-modal multimedia retrieval called geo-multimedia cross-modal retrieval which aims to search out a set of geo-multimedia objects based on geographical distance proximity and semantic similarity between different modalities. Previous studies for cross-modal retrieval and spatial keyword search cannot address this problem effectively because they do not consider multimedia data with geo-tags and do not focus on this type of query. In order to address this problem efficiently, we present the definition of $k$NN geo-multimedia cross-modal query at the first time and introduce relevant conceptions such as cross-modal semantic representation space. To bridge the semantic gap between different modalities, we propose a method named cross-modal semantic matching which contains two important component, i.e., CorrProj and LogsTran, which aims to construct a common semantic representation space for cross-modal semantic similarity measurement. Besides, we designed a framework based on deep learning techniques to implement common semantic representation space construction. In addition, a novel hybrid indexing structure named GMR-Tree combining geo-multimedia data and R-Tree is presented and a efficient $k$NN search algorithm called $k$GMCMS is designed. Comprehensive experimental evaluation on real and synthetic dataset clearly demonstrates that our solution outperforms the-state-of-the-art methods.
255 - Sophie Laplace 2008
One of the current challenges of Information Systems is to ensure semi-structured data transmission, such as multimedia data, in a distributed and pervasive environment. Information Sytems must then guarantee users a quality of service ensuring data accessibility whatever the hardware and network conditions may be. They must also guarantee information coherence and particularly intelligibility that imposes a personalization of the service. Within this framework, we propose a design method based on original models of multimedia applications and quality of service. We also define a supervision platform Kalinahia using a user centered heuristic allowing us to define at any moment which configuration of software components constitutes the best answers to users wishes in terms of service.
Deep learning methods can be used to produce control policies, but certifying their safety is challenging. The resulting networks are nonlinear and often very large. In response to this challenge, we present OVERT: a sound algorithm for safety verification of nonlinear discrete-time closed loop dynamical systems with neural network control policies. The novelty of OVERT lies in combining ideas from the classical formal methods literature with ideas from the newer neural network verification literature. The central concept of OVERT is to abstract nonlinear functions with a set of optimally tight piecewise linear bounds. Such piecewise linear bounds are designed for seamless integration into ReLU neural network verification tools. OVERT can be used to prove bounded-time safety properties by either computing reachable sets or solving feasibility queries directly. We demonstrate various examples of safety verification for several classical benchmark examples. OVERT compares favorably to existing methods both in computation time and in tightness of the reachable set.
131 - Rafael C. Cardoso 2020
Software engineering of modular robotic systems is a challenging task, however, verifying that the developed components all behave as they should individually and as a whole presents its own unique set of challenges. In particular, distinct components in a modular robotic system often require different verification techniques to ensure that they behave as expected. Ensuring whole system consistency when individual components are verified using a variety of techniques and formalisms is difficult. This paper discusses how to use compositional verification to integrate the various verification techniques that are applied to modular robotic software, using a First-Order Logic (FOL) contract that captures each components assumptions and guarantees. These contracts can then be used to guide the verification of the individual components, be it by testing or the use of a formal method. We provide an illustrative example of an autonomous robot used in remote inspection. We also discuss a way of defining confidence for the verification associated with each component.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا