Do you want to publish a course? Click here

Calorimetric Evidence for a Fulde-Ferrell-Larkin-Ovchinnikov Superconducting State in the Layered Organic Superconductor kappa$-(BEDT-TTF)$_2$Cu(NCS)$_2$

212   0   0.0 ( 0 )
 Added by Jochen Wosnitza
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The specific heat of the layered organic superconductor $kappa$-% (BEDT-TTF)$_2$Cu(NCS)$_2$, where BEDT-TTF is bisethylenedithio-% tetrathiafulvalene, has been studied in magnetic fields up to 28 T applied perpendicular and parallel to the superconducting layers. In parallel fields above 21 T, the superconducting transition becomes first order, which signals that the Pauli-limiting field is reached. Instead of saturating at this field value, the upper critical field increases sharply and a second first-order transition line appears within the superconducting phase. Our results give strong evidence that the phase, which separates the homogeneous superconducting state from the normal state is a realization of a Fulde-Ferrell-Larkin-Ovchinnikov state.



rate research

Read More

Single crystals of the layered organic type II superconductor, $kappa$-(BEDT-TTF)$_{2}$Cu(NCS)$_{2}$, have been studied in magnetic fields of up to 33 T and at temperatures between 0.5 K and 11 K using a compact differential susceptometer. When the magnetic field lies precisely in the quasi-two-dimensional planes of the material, there is strong evidence for a phase transition from the superconducting mixed state into a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, manisfested as a change in the rigidity of the vortex system. The behaviour of the transition as a function of temperature is in good agreement with theoretical predictions.
In this work, the thermodynamic properties of the organic superconductor $lambda$-(BETS)$_2$GaCl$_4$ are investigated to study a high-field superconducting state known as the putative Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase. We observed a small thermodynamic anomaly in the field $H_{rm FFLO}$ $sim$ 10~T, which corresponds to the Pauli limiting field $H_{rm P}$. This anomaly probably originates from a transition from a uniform superconducting state to the FFLO state. $H_{rm FFLO}$ does not show a strong field-angular dependence due to a quasi-isotropic paramagnetic effect in $lambda$-(BETS)$_2$GaCl$_4$. The thermodynamic anomaly at $H_{rm FFLO}$ is smeared out and low-temperature upper critical field $H_{rm c2}$ changes significantly if fields are not parallel to the conducting plane even for a deviation of $sim$0.5$^{circ}$. This behavior indicates that the high-field state is very unstable, as it is influenced by the strongly anisotropic orbital effect. Our results are consistent with the theoretical predictions on the FFLO state, and show that the high-field superconductivity is probably an FFLO state in $lambda$-(BETS)$_2$GaCl$_4$ from a thermodynamic point of view.
Nuclear magnetic resonance measurements were performed on CeCu$_{2}$Si$_{2}$ in the presence of a magnetic field close to the upper critical field $mu_{0} H_{rm c2}$ in order to investigate its superconducting (SC) properties near pair-breaking fields. In lower fields, the Knight shift and nuclear spin-lattice relaxation rate divided by temperature $1/T_1T$ abruptly decreased below the SC transition temperature $T_{rm c}(H)$, a phenomenon understood within the framework of conventional spin-singlet superconductivity. In contrast, $1/T_1T$ was enhanced just below $T_{rm c}(H)$ and exhibited a broad maximum when magnetic fields close to $mu_0H_{rm c2}(0)$ were applied parallel or perpendicular to the $c$ axis, although the Knight shift decreased just below $T_{rm c}(H)$. This enhancement of $1/T_1T$, which was recently observed in the organic superconductor $kappa$-(BEDT-TTF)$_{2}$Cu(NCS)$_{2}$, suggests the presence of high-density Andreev bound states in the inhomogeneous SC region, a hallmark of the Fulde-Ferrell-Larkin-Ovchinnikov phase.
80 - M. Houzet , V. P. Mineev 2007
We develop the Ginzburg-Landau theory of the vortex lattice in clean isotropic three-dimensional superconductors at large Maki parameter, when inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov state is favored. We show that diamagnetic superfluid currents mainly come from paramagnetic interaction of electron spins with local magnetic field, and not from kinetic energy response to the external field as usual. We find that the stable vortex lattice keeps its triangular structure as in usual Abrikosov mixed state, while the internal magnetic field acquires components perpendicular to applied magnetic field. Experimental possibilities related to this prediction are discussed.
370 - T.Sasaki , H. Oizumi , Y. Honda 2010
The suppression of superconductivity by nonmagnetic disorder is investigated systematically in the organic superconductor $kappa$-(BEDT-TTF)$_2$Cu(NCS)$_2$. We introduce a nonmagnetic disorder arising from molecule substitution in part with deuterated BEDT-TTF or BMDT-TTF for BEDT-TTF molecules and molecular defects introduced by X-ray irradiation. A quantitative evaluation of the scattering time $tau_{rm dHvA}$ is carried out by de Haas-van Alphen (dHvA) effect measurement. A large reduction in $T_{rm c}$ with a linear dependence on $1/tau_{rm dHvA}$ is found in the small-disorder region below $1/tau_{rm dHvA} simeq$ 1 $times$ 10$^{12}$ s$^{-1}$ in both the BMDT-TTF molecule-substituted and X-ray-irradiated samples. The observed linear relation between $T_{rm c}$ and $1/tau_{rm dHvA}$ is in agreement with the Abrikosov-Gorkov (AG) formula, at least in the small-disorder region. This observation is reasonably consistent with the unconventional superconductivity proposed thus far for the present organic superconductor. A deviation from the AG formula, however, is observed in the large-disorder region above $1/tau_{rm dHvA} simeq$ 1 $times$ 10$^{12}$ s$^{-1}$, which reproduces the previous transport study (J. G. Analytis {it et al.}: Phys. Rev. Lett. {bf 96} (2006) 177002). We present some interpretations of this deviation from the viewpoints of superconductivity and the inherent difficulties in the evaluation of scattering time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا