Do you want to publish a course? Click here

Cosmic Acceleration, Dark Energy and Fundamental Physics

298   0   0.0 ( 0 )
 Added by Dragan Huterer
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

A web of interlocking observations has established that the expansion of the Universe is speeding up and not slowing, revealing the presence of some form of repulsive gravity. Within the context of general relativity the cause of cosmic acceleration is a highly elastic (psim -rho), very smooth form of energy called ``dark energy accounting for about 75% of the Universe. The ``simplest explanation for dark energy is the zero-point energy density associated with the quantum vacuum; however, all estimates for its value are many orders-of-magnitude too large. Other ideas for dark energy include a very light scalar field or a tangled network of topological defects. An alternate explanation invokes gravitational physics beyond general relativity. Observations and experiments underway and more precise cosmological measurements and laboratory experiments planned for the next decade will test whether or not dark energy is the quantum energy of the vacuum or something more exotic, and whether or not general relativity can self consistently explain cosmic acceleration. Dark energy is the most conspicuous example of physics beyond the standard model and perhaps the most profound mystery in all of science.



rate research

Read More

We argue that dark energy with multiple fields is theoretically well-motivated and predicts distinct observational signatures, in particular when cosmic acceleration takes place along a trajectory that is highly non-geodesic in field space. Such models provide novel physics compared to $Lambda$CDM and quintessence by allowing cosmic acceleration on steep potentials. From the theoretical point of view, these theories can easily satisfy the conjectured swampland constraints and may in certain cases be technically natural, potential problems which are endemic to standard single-field dark energy. Observationally, we argue that while such multi-field models are likely to be largely indistinguishable from the concordance cosmology at the background level, dark energy perturbations can cluster, leading to an enhanced growth of large-scale structure that may be testable as early as the next generation of cosmological surveys.
Future gravitational-wave observations will enable unprecedented and unique science in extreme gravity and fundamental physics answering questions about the nature of dynamical spacetimes, the nature of dark matter and the nature of compact objects.
The immediate observational consequence of a non-trivial spatial topology of the Universe is that an observer could potentially detect multiple images of radiating sources. In particular, a non-trivial topology will generate pairs of correlated circles of temperature fluctuations in the anisotropies maps of the cosmic microwave background (CMB), the so-called circles-in-the-sky. In this way, a detectable non-trivial spatial topology may be seen as an observable attribute, which can be probed through the circles-in-the-sky for all locally homogeneous and isotropic universes with no assumptions on the cosmological dark energy (DE) equation of state (EOS) parameters. We show that the knowledge of the spatial topology through the circles-in-the-sky offers an effective way of reducing the degeneracies in the DE EOS parameters. We concretely illustrate the topological role by assuming, as an exanple, a Poincar{e} dodecahedral space topology and reanalyzing the constraints on the parameters of a specific EOS which arise from the supernovae type Ia, baryon acoustic oscillations and the CMB plus the statistical topological contribution.
A dynamical scalar field represents the simplest generalization of a pure Cosmological Constant as a candidate to explain the recent evidence in favour of the accelerated cosmic expansion. We review the dynamical properties of such a component, and argue that, even if the background expectation value of this field is fixed and the equation of state is the same as a Cosmological Constant, scalar field fluctuations can still be used to distinguish the two components. We compare predicted spectra of Cosmic Microvave Background (CMB) anisotropies in tracking scalar field cosmologies with the present CMB data, in order to get constraints on the amount and equation of state of dark energy. High precision experiments like SNAP, {sc Planck} and {sc SNfactory}, together with the data on Large Scale Structure, are needed to probe this issue with the necessary accuracy. Here we show the intriguing result that, with a strong prior on the value of the Hubble constant today, the assumption of a flat universe, and consistency relations between amplitude and spectral index of primordial gravitational waves, the present CMB data at $1sigma$ give indication of a dark energy equation of state larger than -1, while the ordinary Cosmological Constant is recovered at $2sigma$.
We study the effect of an explicit interaction between two scalar fields components describing dark matter in the context of a recent proposal framework for interaction. We find that, even assuming a very small coupling, it is sufficient to explain the observational effects of a cosmological constant, and also overcome the problems of the $Lambda$CDM model without assuming an exotic dark energy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا