Do you want to publish a course? Click here

Scalar field dark energy and Cosmic Microwave Background

75   0   0.0 ( 0 )
 Added by Carlo Baccigalupi
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

A dynamical scalar field represents the simplest generalization of a pure Cosmological Constant as a candidate to explain the recent evidence in favour of the accelerated cosmic expansion. We review the dynamical properties of such a component, and argue that, even if the background expectation value of this field is fixed and the equation of state is the same as a Cosmological Constant, scalar field fluctuations can still be used to distinguish the two components. We compare predicted spectra of Cosmic Microvave Background (CMB) anisotropies in tracking scalar field cosmologies with the present CMB data, in order to get constraints on the amount and equation of state of dark energy. High precision experiments like SNAP, {sc Planck} and {sc SNfactory}, together with the data on Large Scale Structure, are needed to probe this issue with the necessary accuracy. Here we show the intriguing result that, with a strong prior on the value of the Hubble constant today, the assumption of a flat universe, and consistency relations between amplitude and spectral index of primordial gravitational waves, the present CMB data at $1sigma$ give indication of a dark energy equation of state larger than -1, while the ordinary Cosmological Constant is recovered at $2sigma$.



rate research

Read More

Primordial magnetic fields will generate non-Gaussian signals in the cosmic microwave background (CMB) as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. We compute a new measure of magnetic non-Gaussianity, the CMB trispectrum, on large angular scales, sourced via the Sachs-Wolfe effect. The trispectra induced by magnetic energy density and by magnetic scalar anisotropic stress are found to have typical magnitudes of approximately a few times 10^{-29} and 10^{-19}, respectively. Observational limits on CMB non-Gaussianity from WMAP data allow us to conservatively set upper limits of a nG, and plausibly sub-nG, on the present value of the primordial cosmic magnetic field. This represents the tightest limit so far on the strength of primordial magnetic fields, on Mpc scales, and is better than limits from the CMB bispectrum and all modes in the CMB power spectrum. Thus, the CMB trispectrum is a new and more sensitive probe of primordial magnetic fields on large scales.
72 - F. Giovi 2003
We consider the influence of the dark energy dynamics at the onset of cosmic acceleration on the Cosmic Microwave Background (CMB) bispectrum, through the weak lensing effect induced by structure formation. We study the line of sight behavior of the contribution to the bispectrum signal at a given angular multipole $l$: we show that it is non-zero in a narrow interval centered at a redshift $z$ satisfying the relation $l/r(z)simeq k_{NL}(z)$, where the wavenumber corresponds to the scale entering the non-linear phase, and $r$ is the cosmological comoving distance. The relevant redshift interval is in the range $0.1lsim zlsim 2$ for multipoles $1000gsimellgsim 100$; the signal amplitude, reflecting the perturbation dynamics, is a function of the cosmological expansion rate at those epochs, probing the dark energy equation of state redshift dependence independently on its present value. We provide a worked example by considering tracking inverse power law and SUGRA Quintessence scenarios, having sensibly different redshift dynamics and respecting all the present observational constraints. For scenarios having the same present equation of state, we find that the effect described above induces a projection feature which makes the bispectra shifted by several tens of multipoles, about 10 times more than the corresponding effect on the ordinary CMB angular power spectrum.
96 - James Bock 2006
One of the most spectacular scientific breakthroughs in past decades was using measurements of the fluctuations in the cosmic microwave background (CMB) to test precisely our understanding of the history and composition of the Universe. This report presents a roadmap for leading CMB research to its logical next step, using precision polarization measurements to learn about ultra-high-energy physics and the Big Bang itself.
A recently proposed mechanism for large-scale structure in string cosmology --based on massless axionic seeds-- is further analyzed and extended to the acoustic-peak region. Existence, structure, and normalization of the peaks turn out to depend crucially on the overall evolution of extra dimensions during the pre-big bang phase: conversely, precise cosmic microwave background anisotropy data in the acoustic-peak region will provide, within the next decade, a window on string-theorys extra dimensions before their eventual compactification.
212 - George Chapline 2010
An initial state for the observable universe consisting of a finite region with a large vacuum energy will break-up due to near horizon quantum critical fluctuations. This will lead to a Friedmann-like early universe consisting of an expanding cloud of dark energy stars and radiation. In this note we point out that this scenario provides a simple explanation for the present day density of dark matter as well as the level of CMB temperature flucuations. It is also predicted that all dark matter will be clumped on mass scales ~ 10E3 solar masses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا