Do you want to publish a course? Click here

Dark energy equation of state and cosmic topology

162   0   0.0 ( 0 )
 Added by Marcelo J. Reboucas
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The immediate observational consequence of a non-trivial spatial topology of the Universe is that an observer could potentially detect multiple images of radiating sources. In particular, a non-trivial topology will generate pairs of correlated circles of temperature fluctuations in the anisotropies maps of the cosmic microwave background (CMB), the so-called circles-in-the-sky. In this way, a detectable non-trivial spatial topology may be seen as an observable attribute, which can be probed through the circles-in-the-sky for all locally homogeneous and isotropic universes with no assumptions on the cosmological dark energy (DE) equation of state (EOS) parameters. We show that the knowledge of the spatial topology through the circles-in-the-sky offers an effective way of reducing the degeneracies in the DE EOS parameters. We concretely illustrate the topological role by assuming, as an exanple, a Poincar{e} dodecahedral space topology and reanalyzing the constraints on the parameters of a specific EOS which arise from the supernovae type Ia, baryon acoustic oscillations and the CMB plus the statistical topological contribution.



rate research

Read More

Modified gravity has garnered interest as a backstop against dark matter and dark energy (DE). As one possible modification, the graviton can become massive, which introduces a new scalar field - here with a Galileon-type symmetry. The field can lead to a nontrivial equation of state (EOS) of DE which is density-and-scale-dependent. Tension between Type Ia supernovae and Planck could be reduced. In voids the scalar field dramatically alters the EOS of DE, induces a soon-observable gravitational slip between the two metric potentials, and develops a topological defect (domain wall) due to a nontrivial vacuum structure for the field.
In this work we have used the recent cosmic chronometers data along with the latest estimation of the local Hubble parameter value, $H_0$ at 2.4% precision as well as the standard dark energy probes, such as the Supernovae Type Ia, baryon acoustic oscillation distance measurements, and cosmic microwave background measurements (PlanckTT $+$ lowP) to constrain a dark energy model where the dark energy is allowed to interact with the dark matter. A general equation of state of dark energy parametrized by a dimensionless parameter `$beta$ is utilized. From our analysis, we find that the interaction is compatible with zero within the 1$sigma$ confidence limit. We also show that the same evolution history can be reproduced by a small pressure of the dark matter.
114 - Yuri Shtanov , Varun Sahni 2010
We generalize the cosmic energy equation to the case when massive particles interact via a modified gravitational potential of the form phi(a, r), which is allowed to explicitly depend upon the cosmological time through the expansion factor a(t). Using the nonrelativistic approximation for particle dynamics, we derive the equation for the cosmological expansion which has the form of the Friedmann equation with a renormalized gravitational constant. The generalized Layzer-Irvine cosmic energy equation and the associated cosmic virial theorem are applied to some recently proposed modifications of the Newtonian gravitational interaction between dark-matter particles. We also draw attention to the possibility that the cosmic energy equation may be used to probe the expansion history of the universe thereby throwing light on the nature of dark matter and dark energy.
471 - P. P. Avelino , A. Barreira 2011
We derive the Layzer-Irvine equation in the presence of a homogeneous (or quasi-homogeneous) dark energy component with an arbitrary equation of state. We extend the Layzer-Irvine equation to homogeneous and isotropic universes with an arbitrary number of dimensions and obtain the corresponding virial relation for sufficiently relaxed objects. We find analogous equations describing the dynamics of cosmic string loops and other p-branes of arbitrary dimensionality, discussing the corresponding relativistic and non-relativistic limits. Finally, we generalize the Layzer-Irvine equation to account for a non-minimal interaction between dark matter and dark energy, discussing its practical use as a signature of such an interaction.
125 - Seyen Kouwn , Phillial Oh , 2015
We investigate cosmology of massive electrodynamics and explore the possibility whether massive photon could provide an explanation of the dark energy. The action is given by the scalar-vector-tensor theory of gravity which is obtained by non-minimal coupling of the massive Stueckelberg QED with gravity and its cosmological consequences are studied by paying a particular attention to the role of photon mass. We find that the theory allows cosmological evolution where the radiation- and matter-dominated epochs are followed by a long period of virtually constant dark energy that closely mimics $Lambda$CDM model and the main source of the current acceleration is provided by the nonvanishing photon mass governed by the relation $Lambdasim m^2$. A detailed numerical analysis shows that the nonvanishing photon mass of the order of $sim 10^{-34}$ eV is consistent with the current observations. This magnitude is far less than the most stringent limit on the photon mass available so far, which is of the order of $m leq 10^{-27}$eV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا