Do you want to publish a course? Click here

Response of degree-correlated scale-free networks to stimuli

205   0   0.0 ( 0 )
 Added by Sheng-Jun Wang
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The response of degree-correlated scale-free attractor networks to stimuli is studied. We show that degree-correlated scale-free networks are robust to random stimuli as well as the uncorrelated scale-free networks, while assortative (disassortative) scale-free networks are more (less) sensitive to directed stimuli than uncorrelated networks. We find that the degree-correlation of scale-free networks makes the dynamics of attractor systems different from uncorrelated ones. The dynamics of correlated scale-free attractor networks result in the effects of degree correlation on the response to stimuli.



rate research

Read More

The studies based on $A+A rightarrow emptyset$ and $A+Brightarrow emptyset$ diffusion-annihilation processes have so far been studied on weighted uncorrelated scale-free networks and fractal scale-free networks. In the previous reports, it is widely accepted that the segregation of particles in the processes is introduced by the fractal structure. In this paper, we study these processes on a family of weighted scale-free networks with identical degree sequence. We find that the depletion zone and segregation are essentially caused by the disassortative mixing, namely, high-degree nodes tend to connect with low-degree nodes. Their influence on the processes is governed by the correlation between the weight and degree. Our finding suggests both the weight and degree distribution dont suffice to characterize the diffusion-annihilation processes on weighted scale-free networks.
We investigate analytically and numerically the critical line in undirected random Boolean networks with arbitrary degree distributions, including scale-free topology of connections $P(k)sim k^{-gamma}$. We show that in infinite scale-free networks the transition between frozen and chaotic phase occurs for $3<gamma < 3.5$. The observation is interesting for two reasons. First, since most of critical phenomena in scale-free networks reveal their non-trivial character for $gamma<3$, the position of the critical line in Kauffman model seems to be an important exception from the rule. Second, since gene regulatory networks are characterized by scale-free topology with $gamma<3$, the observation that in finite-size networks the mentioned transition moves towards smaller $gamma$ is an argument for Kauffman model as a good starting point to model real systems. We also explain that the unattainability of the critical line in numerical simulations of classical random graphs is due to percolation phenomena.
Scale-free networks with topology-dependent interactions are studied. It is shown that the universality classes of critical behavior, which conventionally depend only on topology, can also be explored by tuning the interactions. A mapping, $gamma = (gamma - mu)/(1-mu)$, describes how a shift of the standard exponent $gamma$ of the degree distribution $P(q)$ can absorb the effect of degree-dependent pair interactions $J_{ij} propto (q_iq_j)^{-mu}$. Replica technique, cavity method and Monte Carlo simulation support the physical picture suggested by Landau theory for the critical exponents and by the Bethe-Peierls approximation for the critical temperature. The equivalence of topology and interaction holds for equilibrium and non-equilibrium systems, and is illustrated with interdisciplinary applications.
A complete understanding of real networks requires us to understand the consequences of the uneven interaction strengths between a systems components. Here we use the minimum spanning tree (MST) to explore the effect of weight assignment and network topology on the organization of complex networks. We find that if the weight distribution is correlated with the network topology, the MSTs are either scale-free or exponential. In contrast, when the correlations between weights and topology are absent, the MST degree distribution is a power-law and independent of the weight distribution. These results offer a systematic way to explore the impact of weak links on the structure and integrity of complex networks.
Based on the concept and techniques of first-passage probability in Markov chain theory, this letter provides a rigorous proof for the existence of the steady-state degree distribution of the scale-free network generated by the Barabasi-Albert (BA) model, and mathematically re-derives the exact analytic formulas of the distribution. The approach developed here is quite general, applicable to many other scale-free types of complex networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا