Do you want to publish a course? Click here

Kauffman Boolean model in undirected scale free networks

160   0   0.0 ( 0 )
 Added by Piotr Fronczak
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate analytically and numerically the critical line in undirected random Boolean networks with arbitrary degree distributions, including scale-free topology of connections $P(k)sim k^{-gamma}$. We show that in infinite scale-free networks the transition between frozen and chaotic phase occurs for $3<gamma < 3.5$. The observation is interesting for two reasons. First, since most of critical phenomena in scale-free networks reveal their non-trivial character for $gamma<3$, the position of the critical line in Kauffman model seems to be an important exception from the rule. Second, since gene regulatory networks are characterized by scale-free topology with $gamma<3$, the observation that in finite-size networks the mentioned transition moves towards smaller $gamma$ is an argument for Kauffman model as a good starting point to model real systems. We also explain that the unattainability of the critical line in numerical simulations of classical random graphs is due to percolation phenomena.



rate research

Read More

Scale-free networks with topology-dependent interactions are studied. It is shown that the universality classes of critical behavior, which conventionally depend only on topology, can also be explored by tuning the interactions. A mapping, $gamma = (gamma - mu)/(1-mu)$, describes how a shift of the standard exponent $gamma$ of the degree distribution $P(q)$ can absorb the effect of degree-dependent pair interactions $J_{ij} propto (q_iq_j)^{-mu}$. Replica technique, cavity method and Monte Carlo simulation support the physical picture suggested by Landau theory for the critical exponents and by the Bethe-Peierls approximation for the critical temperature. The equivalence of topology and interaction holds for equilibrium and non-equilibrium systems, and is illustrated with interdisciplinary applications.
A complete understanding of real networks requires us to understand the consequences of the uneven interaction strengths between a systems components. Here we use the minimum spanning tree (MST) to explore the effect of weight assignment and network topology on the organization of complex networks. We find that if the weight distribution is correlated with the network topology, the MSTs are either scale-free or exponential. In contrast, when the correlations between weights and topology are absent, the MST degree distribution is a power-law and independent of the weight distribution. These results offer a systematic way to explore the impact of weak links on the structure and integrity of complex networks.
The studies based on $A+A rightarrow emptyset$ and $A+Brightarrow emptyset$ diffusion-annihilation processes have so far been studied on weighted uncorrelated scale-free networks and fractal scale-free networks. In the previous reports, it is widely accepted that the segregation of particles in the processes is introduced by the fractal structure. In this paper, we study these processes on a family of weighted scale-free networks with identical degree sequence. We find that the depletion zone and segregation are essentially caused by the disassortative mixing, namely, high-degree nodes tend to connect with low-degree nodes. Their influence on the processes is governed by the correlation between the weight and degree. Our finding suggests both the weight and degree distribution dont suffice to characterize the diffusion-annihilation processes on weighted scale-free networks.
Networks with fat-tailed degree distributions are omnipresent across many scientific disciplines. Such systems are characterized by so-called hubs, specific nodes with high numbers of connections to other nodes. By this property, they are expected to be key to the collective network behavior, e.g., in Ising models on such complex topologies. This applies in particular to the transition into a globally ordered network state, which thereby proceeds in a hierarchical fashion, and with a non-trivial local structure. Standard mean-field theory of Ising models on scale-free networks underrates the presence of the hubs, while nevertheless providing remarkably reliable estimates for the onset of global order. Here, we expose that a spurious self-feedback effect, inherent to mean-field theory, underlies this apparent paradox. More specifically, we demonstrate that higher order interaction effects precisely cancel the self-feedback on the hubs, and we expose the importance of hubs for the distinct onset of local versus global order in the network. Due to the generic nature of our arguments, we expect the mechanism that we uncover for the archetypal case of Ising networks of the Barabasi-Albert type to be also relevant for other systems with a strongly hierarchical underlying network structure.
111 - Do-Hyun Kim 2014
In this paper, we will investigate critical phenomena by considering a model spin-glass on scale-free networks. For this purpose, we consider the Ghatak-Sherrington (GS) model, a spin-1 spin-glass model with a crystal field, instead of the usual Ising-type model. Scale-free networks on which the GS model is placed are constructed from the static model, in which the number of vertices is fixed from the beginning. On the basis of the replica-symmetric solution, we obtain the analytical solutions, i.e., free energy and order parameters, and we derive the various phase diagrams consisting of the paramagnetic, ferromagnetic, and spin glass phases as functions of temperature $T$, the degree exponent $lambda$, the mean degree $K$, and the fraction of the ferromagnetic interactions $rho$. Since the present model is based on the GS model, which considers the three states ($S=0, pm 1$), the $S=0$ state plays a crucial role in the $lambda$-dependent critical behavior: glass transition temperature $T_{g}$ has a finite value, even when $2 < lambda < 3$. In addition, when the crystal field becomes nonzero, the present model clearly exhibits three types of inverse transitions, which occur when an ordered phase is more entropic than a disordered one.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا