Do you want to publish a course? Click here

Degree-distribution stability of scale-free networks

104   0   0.0 ( 0 )
 Added by Guanrong Chen
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

Based on the concept and techniques of first-passage probability in Markov chain theory, this letter provides a rigorous proof for the existence of the steady-state degree distribution of the scale-free network generated by the Barabasi-Albert (BA) model, and mathematically re-derives the exact analytic formulas of the distribution. The approach developed here is quite general, applicable to many other scale-free types of complex networks.



rate research

Read More

In this paper, we abstract a kind of stochastic processes from evolving processes of growing networks, this process is called growing network Markov chains. Thus the existence and the formulas of degree distribution are transformed to the corresponding problems of growing network Markov chains. First we investigate the growing network Markov chains, and obtain the condition in which the steady degree distribution exists and get its exact formulas. Then we apply it to various growing networks. With this method, we get a rigorous, exact and unified solution of the steady degree distribution for growing networks.
We study geometric random graphs defined on the points of a Poisson process in $d$-dimensional space, which additionally carry independent random marks. Edges are established at random using the marks of the endpoints and the distance between points in a flexible way. Our framework includes the soft Boolean model (where marks play the role of radii of balls centred in the vertices), a version of spatial preferential attachment (where marks play the role of birth times), and a whole range of other graph models with scale-free degree distributions and edges spanning large distances. In this versatile framework we give sharp criteria for absence of ultrasmallness of the graphs and in the ultrasmall regime establish a limit theorem for the chemical distance of two points. Other than in the mean-field scale-free network models the boundary of the ultrasmall regime depends not only on the power-law exponent of the degree distribution but also on the spatial embedding of the graph, quantified by the rate of decay of the probability of an edge connecting typical points in terms of their spatial distance.
Fractal scale-free networks are empirically known to exhibit disassortative degree mixing. It is, however, not obvious whether a negative degree correlation between nearest neighbor nodes makes a scale-free network fractal. Here we examine the possibility that disassortativity in complex networks is the origin of fractality. To this end, maximally disassortative (MD) networks are prepared by rewiring edges while keeping the degree sequence of an initial uncorrelated scale-free network that is guaranteed to become fractal by rewiring edges. Our results show that most of MD networks with different topologies are not fractal, which demonstrates that disassortativity does not cause the fractal property of networks. In addition, we suggest that fractality of scale-free networks requires a long-range repulsive correlation in similar degrees.
The response of degree-correlated scale-free attractor networks to stimuli is studied. We show that degree-correlated scale-free networks are robust to random stimuli as well as the uncorrelated scale-free networks, while assortative (disassortative) scale-free networks are more (less) sensitive to directed stimuli than uncorrelated networks. We find that the degree-correlation of scale-free networks makes the dynamics of attractor systems different from uncorrelated ones. The dynamics of correlated scale-free attractor networks result in the effects of degree correlation on the response to stimuli.
A classic measure of ecological stability describes the tendency of a community to return to equilibrium after small perturbation. While many advances show how the network structure of these communities severely constrains such tendencies, few if any of these advances address one of the most fundamental properties of network structure: heterogeneity among nodes with different numbers of links. Here we systematically explore this property of degree heterogeneity and find that its effects on stability systematically vary with different types of interspecific interactions. Degree heterogeneity is always destabilizing in ecological networks with both competitive and mutualistic interactions while its effects on networks of predator-prey interactions such as food webs depend on prey contiguity, i.e., the extent to which the species consume an unbroken sequence of prey in community niche space. Increasing degree heterogeneity stabilizes food webs except those with the most contiguity. These findings help explain previously unexplained observations that food webs are highly but not completely contiguous and, more broadly, deepens our understanding of the stability of complex ecological networks with important implications for other types of dynamical systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا