No Arabic abstract
Using the recently reported mode locking effect we demonstrate a highly robust control of electron spin coherence in an ensemble of (In,Ga)As quantum dots during the single spin coherence time. The spin precession in a transverse magnetic field can be fully controlled up to 25 K by the parameters of the exciting pulsed laser protocol such as the pulse train sequence, leading to adjustable quantum beat bursts in Faraday rotation. Flipping of the electron spin precession phase was demonstrated by inverting the polarization within a pulse doublet sequence.
Electron spin coherence has been generated optically in n-type modulation doped (In,Ga)As/GaAs quantum dots (QDs) which contain on average a single electron per dot. The coherence arises from resonant excitation of the QDs by circularly-polarized laser pulses, creating a coherent superposition of an electron and a trion state. Time dependent Faraday rotation is used to probe the spin precession of the optically oriented electrons about a transverse magnetic field. Spin coherence generation can be controlled by pulse intensity, being most efficient for (2n+1)pi-pulses.
A description of spin Faraday rotation, Kerr rotation and ellipticity signals for single- and multi-layer ensembles of singly charged quantum dots (QDs) is developed. The microscopic theory considers both the single pump-pulse excitation and the effect of a train of such pulses, which in the case of long resident-electron spin coherence time leads to a stationary distribution of the electron spin polarization. The calculations performed for single-color and two-color pump-probe setups show that the three experimental techniques: Faraday rotation, Kerr rotation and ellipticity measurements provide complementary information about an inhomogeneous ensemble of QDs. The microscopic theory developed for a three-dimensional ensemble of QDs is shown to agree with the phenomenological description of these effects. The typical time-dependent traces of pump-probe Faraday rotation, Kerr rotation and ellipticity signals are calculated for various experimental conditions.
We report on the coherent optical excitation of electron spin polarization in the ground state of charged GaAs quantum dots via an intermediate charged exciton (trion) state. Coherent optical fields are used for the creation and detection of the Raman spin coherence between the spin ground states of the charged quantum dot. The measured spin decoherence time, which is likely limited by the nature of the spin ensemble, approaches 10 ns at zero field. We also show that the Raman spin coherence in the quantum beats is caused not only by the usual stimulated Raman interaction but also by simultaneous spontaneous radiative decay of either excited trion state to a coherent combination of the two spin states.
The periodic optical orientation of electron spins in (In,Ga)As/GaAs quantum dots leads to the formation of electron spin precession modes about an external magnetic field which are resonant with the pumping periodicity. As the electron spin is localized within a nuclear spin bath, its polarization imprints onto the spin polarization of the bath. The latter acts back on the electron spin polarization. We implement a pulse protocol where a train of laser pulses is followed by a long, dark gap. It allows us to obtain a high-resolution precession mode spectrum from the free evolution of the electron spin polarization. Additionally, we vary the number of pump pulses in a train to investigate the build-up of the precession modes. To separate out nuclear effects, we suppress the nuclear polarization by using a radio-frequency field. We find that a long-living nuclear spin polarization imprinted by the periodic excitation significantly speeds up the buildup of the electron spin polarization and induces the formation of additional electron spin precession modes. To interpret these findings, we extend an established dynamical nuclear polarization model to take into account optically detuned quantum dots for which nuclear spins activate additional electron spin precession modes.
We study in theory the generation and detection of electron spin coherence in nonlinear optical spectroscopy of semiconductor quantum dots doped with single electrons. In third-order differential transmission spectra, the inverse width of the ultra-narrow peak at degenerate pump and probe frequencies gives the spin relaxation time ($T_1$), and that of the Stoke and anti-Stoke spin resonances gives the effective spin dephasing time due to the inhomogeneous broadening ($T_2^*$). The spin dephasing time excluding the inhomogeneous broadening effect ($T_2$) is measured by the inverse width of ultra-narrow hole-burning resonances in fifth-order differential transmission spectra.