Do you want to publish a course? Click here

Dialogue State Tracking (DST) is a sub-task of task-based dialogue systems where the user intention is tracked through a set of (domain, slot, slot-value) triplets. Existing DST models can be difficult to extend for new datasets with larger domains/s lots mainly due to either of the two reasons- i) prediction of domain-slot as a pair, and ii) dependency of model parameters on the number of slots and domains. In this work, we propose to address these issues using a Hierarchical DST (Hi-DST) model. At a given turn, the model first detects a change in domain followed by domain prediction if required. Then it decides suitable action for each slot in the predicted domains and finds their value accordingly. The model parameters of Hi-DST are independent of the number of domains/slots. Due to the hierarchical modeling, it achieves O(|M|+|N|) belief state prediction for a single turn where M and N are the set of unique domains and slots respectively. We argue that the hierarchical structure helps in the model explainability and makes it easily extensible to new datasets. Experiments on the MultiWOZ dataset show that our proposed model achieves comparable joint accuracy performance to state-of-the-art DST models.
This paper describes a class project for a recently introduced undergraduate NLP course that gives computer science students the opportunity to explore the data of Dialog State Tracking Challenge 2 (DSTC 2). Student background, curriculum choices, and project details are discussed. The paper concludes with some instructor advice and final reflections.
In the pursuit of natural language understanding, there has been a long standing interest in tracking state changes throughout narratives. Impressive progress has been made in modeling the state of transaction-centric dialogues and procedural texts. However, this problem has been less intensively studied in the realm of general discourse where ground truth descriptions of states may be loosely defined and state changes are less densely distributed over utterances. This paper proposes to turn to simplified, fully observable systems that show some of these properties: Sports events. We curated 2,263 soccer matches including time-stamped natural language commentary accompanied by discrete events such as a team scoring goals, switching players or being penalized with cards. We propose a new task formulation where, given paragraphs of commentary of a game at different timestamps, the system is asked to recognize the occurrence of in-game events. This domain allows for rich descriptions of state while avoiding the complexities of many other real-world settings. As an initial point of performance measurement, we include two baseline methods from the perspectives of sentence classification with temporal dependence and current state-of-the-art generative model, respectively, and demonstrate that even sophisticated existing methods struggle on the state tracking task when the definition of state broadens or non-event chatter becomes prevalent.
Abstract Tracking dialogue states to better interpret user goals and feed downstream policy learning is a bottleneck in dialogue management. Common practice has been to treat it as a problem of classifying dialogue content into a set of pre-defined s lot-value pairs, or generating values for different slots given the dialogue history. Both have limitations on considering dependencies that occur on dialogues, and are lacking of reasoning capabilities. This paper proposes to track dialogue states gradually with reasoning over dialogue turns with the help of the back-end data. Empirical results demonstrate that our method outperforms the state-of-the-art methods in terms of joint belief accuracy for MultiWOZ 2.1, a large-scale human--human dialogue dataset across multiple domains.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا