Do you want to publish a course? Click here

Causal reasoning aims to predict the future scenarios that may be caused by the observed actions. However, existing causal reasoning methods deal with causalities on the word level. In this paper, we propose a novel event-level causal reasoning metho d and demonstrate its use in the task of effect generation. In particular, we structuralize the observed cause-effect event pairs into an event causality network, which describes causality dependencies. Given an input cause sentence, a causal subgraph is retrieved from the event causality network and is encoded with the graph attention mechanism, in order to support better reasoning of the potential effects. The most probable effect event is then selected from the causal subgraph and is used as guidance to generate an effect sentence. Experiments show that our method generates more reasonable effect sentences than various well-designed competitors.
We develop a unified system to answer directly from text open-domain questions that may require a varying number of retrieval steps. We employ a single multi-task transformer model to perform all the necessary subtasks---retrieving supporting facts, reranking them, and predicting the answer from all retrieved documents---in an iterative fashion. We avoid crucial assumptions of previous work that do not transfer well to real-world settings, including exploiting knowledge of the fixed number of retrieval steps required to answer each question or using structured metadata like knowledge bases or web links that have limited availability. Instead, we design a system that can answer open-domain questions on any text collection without prior knowledge of reasoning complexity. To emulate this setting, we construct a new benchmark, called BeerQA, by combining existing one- and two-step datasets with a new collection of 530 questions that require three Wikipedia pages to answer, unifying Wikipedia corpora versions in the process. We show that our model demonstrates competitive performance on both existing benchmarks and this new benchmark. We make the new benchmark available at https://beerqa.github.io/.
In social settings, much of human behavior is governed by unspoken rules of conduct rooted in societal norms. For artificial systems to be fully integrated into social environments, adherence to such norms is a central prerequisite. To investigate wh ether language generation models can serve as behavioral priors for systems deployed in social settings, we evaluate their ability to generate action descriptions that achieve predefined goals under normative constraints. Moreover, we examine if models can anticipate likely consequences of actions that either observe or violate known norms, or explain why certain actions are preferable by generating relevant norm hypotheses. For this purpose, we introduce Moral Stories, a crowd-sourced dataset of structured, branching narratives for the study of grounded, goal-oriented social reasoning. Finally, we propose decoding strategies that combine multiple expert models to significantly improve the quality of generated actions, consequences, and norms compared to strong baselines.
Mathematical reasoning aims to infer satisfiable solutions based on the given mathematics questions. Previous natural language processing researches have proven the effectiveness of sequence-to-sequence (Seq2Seq) or related variants on mathematics so lving. However, few works have been able to explore structural or syntactic information hidden in expressions (e.g., precedence and associativity). This dissertation set out to investigate the usefulness of such untapped information for neural architectures. Firstly, mathematical questions are represented in the format of graphs within syntax analysis. The structured nature of graphs allows them to represent relations of variables or operators while preserving the semantics of the expressions. Having transformed to the new representations, we proposed a graph-to-sequence neural network GraphMR, which can effectively learn the hierarchical information of graphs inputs to solve mathematics and speculate answers. A complete experimental scenario with four classes of mathematical tasks and three Seq2Seq baselines is built to conduct a comprehensive analysis, and results show that GraphMR outperforms others in hidden information learning and mathematics resolving.
Recent years has witnessed the remarkable success in end-to-end task-oriented dialog system, especially when incorporating external knowledge information. However, the quality of most existing models' generated response is still limited, mainly due t o their lack of fine-grained reasoning on deterministic knowledge (w.r.t. conceptual tokens), which makes them difficult to capture the concept shifts and identify user's real intention in cross-task scenarios. To address these issues, we propose a novel intention mechanism to better model deterministic entity knowledge. Based on such a mechanism, we further propose an intention reasoning network (IR-Net), which consists of joint and multi-hop reasoning, to obtain intention-aware representations of conceptual tokens that can be used to capture the concept shifts involved in task-oriented conversations, so as to effectively identify user's intention and generate more accurate responses. Experimental results verify the effectiveness of IR-Net, showing that it achieves the state-of-the-art performance on two representative multi-domain dialog datasets.
Pre-trained language models have led to substantial gains over a broad range of natural language processing (NLP) tasks, but have been shown to have limitations for natural language generation tasks with high-quality requirements on the output, such as commonsense generation and ad keyword generation. In this work, we present a novel Knowledge Filtering and Contrastive learning Network (KFCNet) which references external knowledge and achieves better generation performance. Specifically, we propose a BERT-based filter model to remove low-quality candidates, and apply contrastive learning separately to each of the encoder and decoder, within a general encoder--decoder architecture. The encoder contrastive module helps to capture global target semantics during encoding, and the decoder contrastive module enhances the utility of retrieved prototypes while learning general features. Extensive experiments on the CommonGen benchmark show that our model outperforms the previous state of the art by a large margin: +6.6 points (42.5 vs. 35.9) for BLEU-4, +3.7 points (33.3 vs. 29.6) for SPICE, and +1.3 points (18.3 vs. 17.0) for CIDEr. We further verify the effectiveness of the proposed contrastive module on ad keyword generation, and show that our model has potential commercial value.
The sheer volume of financial statements makes it difficult for humans to access and analyze a business's financials. Robust numerical reasoning likewise faces unique challenges in this domain. In this work, we focus on answering deep questions over financial data, aiming to automate the analysis of a large corpus of financial documents. In contrast to existing tasks on general domain, the finance domain includes complex numerical reasoning and understanding of heterogeneous representations. To facilitate analytical progress, we propose a new large-scale dataset, FinQA, with Question-Answering pairs over Financial reports, written by financial experts. We also annotate the gold reasoning programs to ensure full explainability. We further introduce baselines and conduct comprehensive experiments in our dataset. The results demonstrate that popular, large, pre-trained models fall far short of expert humans in acquiring finance knowledge and in complex multi-step numerical reasoning on that knowledge. Our dataset -- the first of its kind -- should therefore enable significant, new community research into complex application domains. The dataset and code are publicly available at https://github.com/czyssrs/FinQA.
Recently, language models (LMs) have achieved significant performance on many NLU tasks, which has spurred widespread interest for their possible applications in the scientific and social area. However, LMs have faced much criticism of whether they a re truly capable of reasoning in NLU. In this work, we propose a diagnostic method for first-order logic (FOL) reasoning with a new proposed benchmark, LogicNLI. LogicNLI is an NLI-style dataset that effectively disentangles the target FOL reasoning from commonsense inference and can be used to diagnose LMs from four perspectives: accuracy, robustness, generalization, and interpretability. Experiments on BERT, RoBERTa, and XLNet, have uncovered the weaknesses of these LMs on FOL reasoning, which motivates future exploration to enhance the reasoning ability.
Defeasible reasoning is the mode of reasoning where conclusions can be overturned by taking into account new evidence. Existing cognitive science literature on defeasible reasoning suggests that a person forms a mental model'' of the problem scenario before answering questions. Our research goal asks whether neural models can similarly benefit from envisioning the question scenario before answering a defeasible query. Our approach is, given a question, to have a model first create a graph of relevant influences, and then leverage that graph as an additional input when answering the question. Our system, CURIOUS, achieves a new state-of-the-art on three different defeasible reasoning datasets. This result is significant as it illustrates that performance can be improved by guiding a system to think about'' a question and explicitly model the scenario, rather than answering reflexively.
Commonsense is defined as the knowledge on which everyone agrees. However, certain types of commonsense knowledge are correlated with culture and geographic locations and they are only shared locally. For example, the scenes of wedding ceremonies var y across regions due to different customs influenced by historical and religious factors. Such regional characteristics, however, are generally omitted in prior work. In this paper, we construct a Geo-Diverse Visual Commonsense Reasoning dataset (GD-VCR) to test vision-and-language models' ability to understand cultural and geo-location-specific commonsense. In particular, we study two state-of-the-art Vision-and-Language models, VisualBERT and ViLBERT trained on VCR, a standard benchmark with images primarily from Western regions. We then evaluate how well the trained models can generalize to answering the questions in GD-VCR. We find that the performance of both models for non-Western regions including East Asia, South Asia, and Africa is significantly lower than that for Western region. We analyze the reasons behind the performance disparity and find that the performance gap is larger on QA pairs that: 1) are concerned with culture-related scenarios, e.g., weddings, religious activities, and festivals; 2) require high-level geo-diverse commonsense reasoning rather than low-order perception and recognition. Dataset and code are released at https://github.com/WadeYin9712/GD-VCR.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا