While pre-trained language models (PTLMs) have achieved noticeable success on many NLP tasks, they still struggle for tasks that require event temporal reasoning, which is essential for event-centric applications. We present a continual pre-training
approach that equips PTLMs with targeted knowledge about event temporal relations. We design self-supervised learning objectives to recover masked-out event and temporal indicators and to discriminate sentences from their corrupted counterparts (where event or temporal indicators got replaced). By further pre-training a PTLM with these objectives jointly, we reinforce its attention to event and temporal information, yielding enhanced capability on event temporal reasoning. This **E**ffective **CON**tinual pre-training framework for **E**vent **T**emporal reasoning (ECONET) improves the PTLMs' fine-tuning performances across five relation extraction and question answering tasks and achieves new or on-par state-of-the-art performances in most of our downstream tasks.
Commonsense reasoning benchmarks have been largely solved by fine-tuning language models. The downside is that fine-tuning may cause models to overfit to task-specific data and thereby forget their knowledge gained during pre-training. Recent works o
nly propose lightweight model updates as models may already possess useful knowledge from past experience, but a challenge remains in understanding what parts and to what extent models should be refined for a given task. In this paper, we investigate what models learn from commonsense reasoning datasets. We measure the impact of three different adaptation methods on the generalization and accuracy of models. Our experiments with two models show that fine-tuning performs best, by learning both the content and the structure of the task, but suffers from overfitting and limited generalization to novel answers. We observe that alternative adaptation methods like prefix-tuning have comparable accuracy, but generalize better to unseen answers and are more robust to adversarial splits.
Knowledge graphs are essential for numerous downstream natural language processing applications, but are typically incomplete with many facts missing. This results in research efforts on multi-hop reasoning task, which can be formulated as a search p
rocess and current models typically perform short distance reasoning. However, the long-distance reasoning is also vital with the ability to connect the superficially unrelated entities. To the best of our knowledge, there lacks a general framework that approaches multi-hop reasoning in mixed long-short distance reasoning scenarios. We argue that there are two key issues for a general multi-hop reasoning model: i) where to go, and ii) when to stop. Therefore, we propose a general model which resolves the issues with three modules: 1) the local-global knowledge module to estimate the possible paths, 2) the differentiated action dropout module to explore a diverse set of paths, and 3) the adaptive stopping search module to avoid over searching. The comprehensive results on three datasets demonstrate the superiority of our model with significant improvements against baselines in both short and long distance reasoning scenarios.
Numerical reasoning skills are essential for complex question answering (CQA) over text. It requires opertaions including counting, comparison, addition and subtraction. A successful approach to CQA on text, Neural Module Networks (NMNs), follows the
programmer-interpreter paradigm and leverages specialised modules to perform compositional reasoning. However, the NMNs framework does not consider the relationship between numbers and entities in both questions and paragraphs. We propose effective techniques to improve NMNs' numerical reasoning capabilities by making the interpreter question-aware and capturing the relationship between entities and numbers. On the same subset of the DROP dataset for CQA on text, experimental results show that our additions outperform the original NMNs by 3.0 points for the overall F1 score.
Recently, language models (LMs) have achieved significant performance on many NLU tasks, which has spurred widespread interest for their possible applications in the scientific and social area. However, LMs have faced much criticism of whether they a
re truly capable of reasoning in NLU. In this work, we propose a diagnostic method for first-order logic (FOL) reasoning with a new proposed benchmark, LogicNLI. LogicNLI is an NLI-style dataset that effectively disentangles the target FOL reasoning from commonsense inference and can be used to diagnose LMs from four perspectives: accuracy, robustness, generalization, and interpretability. Experiments on BERT, RoBERTa, and XLNet, have uncovered the weaknesses of these LMs on FOL reasoning, which motivates future exploration to enhance the reasoning ability.
Defeasible reasoning is the mode of reasoning where conclusions can be overturned by taking into account new evidence. Existing cognitive science literature on defeasible reasoning suggests that a person forms a mental model'' of the problem scenario
before answering questions. Our research goal asks whether neural models can similarly benefit from envisioning the question scenario before answering a defeasible query. Our approach is, given a question, to have a model first create a graph of relevant influences, and then leverage that graph as an additional input when answering the question. Our system, CURIOUS, achieves a new state-of-the-art on three different defeasible reasoning datasets. This result is significant as it illustrates that performance can be improved by guiding a system to think about'' a question and explicitly model the scenario, rather than answering reflexively.
In social settings, much of human behavior is governed by unspoken rules of conduct rooted in societal norms. For artificial systems to be fully integrated into social environments, adherence to such norms is a central prerequisite. To investigate wh
ether language generation models can serve as behavioral priors for systems deployed in social settings, we evaluate their ability to generate action descriptions that achieve predefined goals under normative constraints. Moreover, we examine if models can anticipate likely consequences of actions that either observe or violate known norms, or explain why certain actions are preferable by generating relevant norm hypotheses. For this purpose, we introduce Moral Stories, a crowd-sourced dataset of structured, branching narratives for the study of grounded, goal-oriented social reasoning. Finally, we propose decoding strategies that combine multiple expert models to significantly improve the quality of generated actions, consequences, and norms compared to strong baselines.
Mathematical reasoning aims to infer satisfiable solutions based on the given mathematics questions. Previous natural language processing researches have proven the effectiveness of sequence-to-sequence (Seq2Seq) or related variants on mathematics so
lving. However, few works have been able to explore structural or syntactic information hidden in expressions (e.g., precedence and associativity). This dissertation set out to investigate the usefulness of such untapped information for neural architectures. Firstly, mathematical questions are represented in the format of graphs within syntax analysis. The structured nature of graphs allows them to represent relations of variables or operators while preserving the semantics of the expressions. Having transformed to the new representations, we proposed a graph-to-sequence neural network GraphMR, which can effectively learn the hierarchical information of graphs inputs to solve mathematics and speculate answers. A complete experimental scenario with four classes of mathematical tasks and three Seq2Seq baselines is built to conduct a comprehensive analysis, and results show that GraphMR outperforms others in hidden information learning and mathematics resolving.
Causal reasoning aims to predict the future scenarios that may be caused by the observed actions. However, existing causal reasoning methods deal with causalities on the word level. In this paper, we propose a novel event-level causal reasoning metho
d and demonstrate its use in the task of effect generation. In particular, we structuralize the observed cause-effect event pairs into an event causality network, which describes causality dependencies. Given an input cause sentence, a causal subgraph is retrieved from the event causality network and is encoded with the graph attention mechanism, in order to support better reasoning of the potential effects. The most probable effect event is then selected from the causal subgraph and is used as guidance to generate an effect sentence. Experiments show that our method generates more reasonable effect sentences than various well-designed competitors.
Despite the success of neural dialogue systems in achieving high performance on the leader-board, they cannot meet users' requirements in practice, due to their poor reasoning skills. The underlying reason is that most neural dialogue models only cap
ture the syntactic and semantic information, but fail to model the logical consistency between the dialogue history and the generated response. Recently, a new multi-turn dialogue reasoning task has been proposed, to facilitate dialogue reasoning research. However, this task is challenging, because there are only slight differences between the illogical response and the dialogue history. How to effectively solve this challenge is still worth exploring. This paper proposes a Fine-grained Comparison Model (FCM) to tackle this problem. Inspired by human's behavior in reading comprehension, a comparison mechanism is proposed to focus on the fine-grained differences in the representation of each response candidate. Specifically, each candidate representation is compared with the whole history to obtain a history consistency representation. Furthermore, the consistency signals between each candidate and the speaker's own history are considered to drive a model prefer a candidate that is logically consistent with the speaker's history logic. Finally, the above consistency representations are employed to output a ranking list of the candidate responses for multi-turn dialogue reasoning. Experimental results on two public dialogue datasets show that our method obtains higher ranking scores than the baseline models.