Do you want to publish a course? Click here

Transformer-based pre-trained language models boost the performance of open-domain dialogue systems. Prior works leverage Transformer-based pre-trained language models to generate texts with desired attributes in two general approaches: (1) gradient- based methods: updating all latent representations of pre-trained models with gradients from attribute models; (2) weighted-decoding methods: re-ranking beam candidates from pre-trained models with attribute functions. However, gradient-based methods lead to high computation cost and can easily get overfitted on small training sets, while weighted-decoding methods are inherently constrained by the low-variance high-bias pre-trained model. In this work, we propose a novel approach to control the generation of Transformer-based pre-trained language models: the SideControl framework, which leverages a novel control attributes loss to incorporate useful control signals, and is shown to perform well with very limited training samples. We evaluate our proposed method on two benchmark open-domain dialogue datasets, and results show that the SideControl framework has better controllability, higher generation quality and better sample-efficiency than existing gradient-based and weighted-decoding baselines.
We develop a unified system to answer directly from text open-domain questions that may require a varying number of retrieval steps. We employ a single multi-task transformer model to perform all the necessary subtasks---retrieving supporting facts, reranking them, and predicting the answer from all retrieved documents---in an iterative fashion. We avoid crucial assumptions of previous work that do not transfer well to real-world settings, including exploiting knowledge of the fixed number of retrieval steps required to answer each question or using structured metadata like knowledge bases or web links that have limited availability. Instead, we design a system that can answer open-domain questions on any text collection without prior knowledge of reasoning complexity. To emulate this setting, we construct a new benchmark, called BeerQA, by combining existing one- and two-step datasets with a new collection of 530 questions that require three Wikipedia pages to answer, unifying Wikipedia corpora versions in the process. We show that our model demonstrates competitive performance on both existing benchmarks and this new benchmark. We make the new benchmark available at https://beerqa.github.io/.
The automatic evaluation of open-domain dialogues remains a largely unsolved challenge. Despite the abundance of work done in the field, human judges have to evaluate dialogues' quality. As a consequence, performing such evaluations at scale is usual ly expensive. This work investigates using a deep-learning model trained on the General Language Understanding Evaluation (GLUE) benchmark to serve as a quality indication of open-domain dialogues. The aim is to use the various GLUE tasks as different perspectives on judging the quality of conversation, thus reducing the need for additional training data or responses that serve as quality references. Due to this nature, the method can infer various quality metrics and can derive a component-based overall score. We achieve statistically significant correlation coefficients of up to 0.7.
An overarching goal of natural language processing is to enable machines to communicate seamlessly with humans. However, natural language can be ambiguous or unclear. In cases of uncertainty, humans engage in an interactive process known as repair: a sking questions and seeking clarification until their uncertainty is resolved. We propose a framework for building a visually grounded question-asking model capable of producing polar (yes-no) clarification questions to resolve misunderstandings in dialogue. Our model uses an expected information gain objective to derive informative questions from an off-the-shelf image captioner without requiring any supervised question-answer data. We demonstrate our model's ability to pose questions that improve communicative success in a goal-oriented 20 questions game with synthetic and human answerers.
An open-domain knowledge graph (KG) has entities as nodes and natural language relations as edges, and is constructed by extracting (subject, relation, object) triples from text. The task of open-domain link prediction is to infer missing relations i n the KG. Previous work has used standard link prediction for the task. Since triples are extracted from text, we can ground them in the larger textual context in which they were originally found. However, standard link prediction methods only rely on the KG structure and ignore the textual context that each triple was extracted from. In this paper, we introduce the new task of open-domain contextual link prediction which has access to both the textual context and the KG structure to perform link prediction. We build a dataset for the task and propose a model for it. Our experiments show that context is crucial in predicting missing relations. We also demonstrate the utility of contextual link prediction in discovering context-independent entailments between relations, in the form of entailment graphs (EG), in which the nodes are the relations. The reverse holds too: context-independent EGs assist in predicting relations in context.
Despite achieving remarkable performance, previous knowledge-enhanced works usually only use a single-source homogeneous knowledge base of limited knowledge coverage. Thus, they often degenerate into traditional methods because not all dialogues can be linked with knowledge entries. This paper proposes a novel dialogue generation model, MSKE-Dialog, to solve this issue with three unique advantages: (1) Rather than only one, MSKE-Dialog can simultaneously leverage multiple heterogeneous knowledge sources (it includes but is not limited to commonsense knowledge facts, text knowledge, infobox knowledge) to improve the knowledge coverage; (2) To avoid the topic conflict among the context and different knowledge sources, we propose a Multi-Reference Selection to better select context/knowledge; (3) We propose a Multi-Reference Generation to generate informative responses by referring to multiple generation references at the same time. Extensive evaluations on a Chinese dataset show the superior performance of this work against various state-of-the-art approaches. To our best knowledge, this work is the first to use the multi-source heterogeneous knowledge in the open-domain knowledge-enhanced dialogue generation.
Research on open-domain dialogue systems that allow free topics is challenging in the field of natural language processing (NLP). The performance of the dialogue system has been improved recently by the method utilizing dialogue-related knowledge; ho wever, non-English dialogue systems suffer from reproducing the performance of English dialogue systems because securing knowledge in the same language with the dialogue system is relatively difficult. Through experiments with a Korean dialogue system, this paper proves that the performance of a non-English dialogue system can be improved by utilizing English knowledge, highlighting the system uses cross-lingual knowledge. For the experiments, we 1) constructed a Korean version of the Wizard of Wikipedia dataset, 2) built Korean-English T5 (KE-T5), a language model pre-trained with Korean and English corpus, and 3) developed a knowledge-grounded Korean dialogue model based on KE-T5. We observed the performance improvement in the open-domain Korean dialogue model even only English knowledge was given. The experimental results showed that the knowledge inherent in cross-lingual language models can be helpful for generating responses in open dialogue systems.
Recent work in open-domain conversational agents has demonstrated that significant improvements in humanness and user preference can be achieved via massive scaling in both pre-training data and model size (Adiwardana et al., 2020; Roller et al., 202 0). However, if we want to build agents with human-like abilities, we must expand beyond handling just text. A particularly important topic is the ability to see images and communicate about what is perceived. With the goal of getting humans to engage in multi-modal dialogue, we investigate combining components from state-of-the-art open-domain dialogue agents with those from state-of-the-art vision models. We study incorporating different image fusion schemes and domain-adaptive pre-training and fine-tuning strategies, and show that our best resulting model outperforms strong existing models in multi-modal dialogue while simultaneously performing as well as its predecessor (text-only) BlenderBot (Roller et al., 2020) in text-based conversation. We additionally investigate and incorporate safety components in our final model, and show that such efforts do not diminish model performance with respect to human preference.
Despite the remarkable performance of large-scale generative models in open-domain conversation, they are known to be less practical for building real-time conversation systems due to high latency. On the other hand, retrieval models could return res ponses with much lower latency but show inferior performance to the large-scale generative models since the conversation quality is bounded by the pre-defined response set. To take advantage of both approaches, we propose a new training method called G2R (Generative-to-Retrieval distillation) that preserves the efficiency of a retrieval model while leveraging the conversational ability of a large-scale generative model by infusing the knowledge of the generative model into the retrieval model. G2R consists of two distinct techniques of distillation: the data-level G2R augments the dialogue dataset with additional responses generated by the large-scale generative model, and the model-level G2R transfers the response quality score assessed by the generative model to the score of the retrieval model by the knowledge distillation loss. Through extensive experiments including human evaluation, we demonstrate that our retrieval-based conversation system trained with G2R shows a substantially improved performance compared to the baseline retrieval model while showing significantly lower inference latency than the large-scale generative models.
Enabling open-domain dialogue systems to ask clarifying questions when appropriate is an important direction for improving the quality of the system response. Namely, for cases when a user request is not specific enough for a conversation system to p rovide an answer right away, it is desirable to ask a clarifying question to increase the chances of retrieving a satisfying answer. To address the problem of asking clarifying questions in open-domain dialogues': (1) we collect and release a new dataset focused on open-domain single- and multi-turn conversations, (2) we benchmark several state-of-the-art neural baselines, and (3) we propose a pipeline consisting of offline and online steps for evaluating the quality of clarifying questions in various dialogues. These contributions are suitable as a foundation for further research.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا