Do you want to publish a course? Click here

Grammatical error correction (GEC) requires a set of labeled ungrammatical / grammatical sentence pairs for training, but obtaining such annotation can be prohibitively expensive. Recently, the Break-It-Fix-It (BIFI) framework has demonstrated strong results on learning to repair a broken program without any labeled examples, but this relies on a perfect critic (e.g., a compiler) that returns whether an example is valid or not, which does not exist for the GEC task. In this work, we show how to leverage a pretrained language model (LM) in defining an LM-Critic, which judges a sentence to be grammatical if the LM assigns it a higher probability than its local perturbations. We apply this LM-Critic and BIFI along with a large set of unlabeled sentences to bootstrap realistic ungrammatical / grammatical pairs for training a corrector. We evaluate our approach on GEC datasets on multiple domains (CoNLL-2014, BEA-2019, GMEG-wiki and GMEG-yahoo) and show that it outperforms existing methods in both the unsupervised setting (+7.7 F0.5) and the supervised setting (+0.5 F0.5).
In this paper, we introduce the Greek version of the automatic annotation tool ERRANT (Bryant et al., 2017), which we named ELERRANT. ERRANT functions as a rule-based error type classifier and was used as the main evaluation tool of the systems parti cipating in the BEA-2019 (Bryant et al., 2019) shared task. Here, we discuss grammatical and morphological differences between English and Greek and how these differences affected the development of ELERRANT. We also introduce the first Greek Native Corpus (GNC) and the Greek WikiEdits Corpus (GWE), two new evaluation datasets with errors from native Greek learners and Wikipedia Talk Pages edits respectively. These two datasets are used for the evaluation of ELERRANT. This paper is a sole fragment of a bigger picture which illustrates the attempt to solve the problem of low-resource languages in NLP, in our case Greek.
Grammatical error correction (GEC) suffers from a lack of sufficient parallel data. Studies on GEC have proposed several methods to generate pseudo data, which comprise pairs of grammatical and artificially produced ungrammatical sentences. Currently , a mainstream approach to generate pseudo data is back-translation (BT). Most previous studies using BT have employed the same architecture for both the GEC and BT models. However, GEC models have different correction tendencies depending on the architecture of their models. Thus, in this study, we compare the correction tendencies of GEC models trained on pseudo data generated by three BT models with different architectures, namely, Transformer, CNN, and LSTM. The results confirm that the correction tendencies for each error type are different for every BT model. In addition, we investigate the correction tendencies when using a combination of pseudo data generated by different BT models. As a result, we find that the combination of different BT models improves or interpolates the performance of each error type compared with using a single BT model with different seeds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا