Do you want to publish a course? Click here

In this work, the performance of batch electrocoagulation (EC) treatment using iron electrodes with monopolar and bipolar electrode configurations for trivalent chromium (Cr (III)) removal from a synthetic wastewater was investigated. The influence s of current density (from 2 to 25 mA/cm2) and initial metal concentration (from 100 to 250 mg/L) on the removal efficiency were explored in a batch stirred cell for monopolar and bipolar configurations. Removal of Cr (III) by EC process from aqueous solution with both monopolar and bipolar electrode configurations was a feasible process. For the initial Cr (III) concentration of 250 mg/L, almost complete removal (99.88%) of Cr (III) was noted after 20 min of EC in case of bipolar electrode arrangement at 25 mA/cm2 with 4.5 mmol/L of supporting electrolyte (Na2SO4) against 89.58% of Cr (III) removal for monopole electrode configuration. At the same electrolysis time, the power consumption was 47 and 15.3 kWh/m3 in case of monopolar and bipolar configuration respectively for the previous removal conditions.
Fresh water shortage problem is the most important difficulty that counters agricultural and industrial improvement strategies on both Arabic and international levels, where Arabian region extends along vast arid and semi- arid areas, and mostly la cks for fresh water resources. Therefore, desalination choice has become an inevitable option to compesate deficiency of water, especially with the long Arabian costal line, where desalinated seawater is considered renewable fresh water resource. However, desalination mechanism requires water pretreatment procedures in order to reduce total hardness and pH values, to prevent salts precipitations which hinder thermal and membrane techniques.
In this work, the performance of batch electrocoagulation (EC) treatment using iron electrodes with monopolar configuration for trivalent chromium (Cr3+) removal from a synthetic wastewater was investigated. The influences of current density (from 2 to 25 mA/cm2) and initial metal concentration (from 50 to 250 mg/L) on the removal efficiency were explored in a batch stirred cell to determine the best experimental conditions.
In the present work, batch electrocoagulation experiments were carried out to evaluate the removal of polycyclic aromatic hydrocarbon (PAHs) from water using aluminum electrodes. The effects of initial pH, current density, electrolysis time, initi al concentration of PAHs, electrolyte type, and electrolyte concentration were investigated to achieve the optimal removal efficiency. The results indicated that the electrocoagulation utilizing the aluminum, as anode and cathode, was an efficient tool in the reduction of these contaminants. The treatment process was found to be largely affected by the current density and the initial composition of water. The removal rate was significantly increased using NaCl as an electrolyte where indirect oxidation by hypochlorite forming later during the treatment was occurred. The results demonstrated that the technical feasibility of the electrocoagulation as a possible and reliable technique for the treatment of PAHs contaminants in water.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا