Do you want to publish a course? Click here

Few-shot relation extraction (FSRE) focuses on recognizing novel relations by learning with merely a handful of annotated instances. Meta-learning has been widely adopted for such a task, which trains on randomly generated few-shot tasks to learn gen eric data representations. Despite impressive results achieved, existing models still perform suboptimally when handling hard FSRE tasks, where the relations are fine-grained and similar to each other. We argue this is largely because existing models do not distinguish hard tasks from easy ones in the learning process. In this paper, we introduce a novel approach based on contrastive learning that learns better representations by exploiting relation label information. We further design a method that allows the model to adaptively learn how to focus on hard tasks. Experiments on two standard datasets demonstrate the effectiveness of our method.
Word segmentation, the problem of finding word boundaries in speech, is of interest for a range of tasks. Previous papers have suggested that for sequence-to-sequence models trained on tasks such as speech translation or speech recognition, attention can be used to locate and segment the words. We show, however, that even on monolingual data this approach is brittle. In our experiments with different input types, data sizes, and segmentation algorithms, only models trained to predict phones from words succeed in the task. Models trained to predict words from either phones or speech (i.e., the opposite direction needed to generalize to new data), yield much worse results, suggesting that attention-based segmentation is only useful in limited scenarios.
Being able to accurately perform Question Difficulty Estimation (QDE) can improve the accuracy of students' assessment and better their learning experience. Traditional approaches to QDE are either subjective or introduce a long delay before new ques tions can be used to assess students. Thus, recent work proposed machine learning-based approaches to overcome these limitations. They use questions of known difficulty to train models capable of inferring the difficulty of questions from their text. Once trained, they can be used to perform QDE of newly created questions. Existing approaches employ supervised models which are domain-dependent and require a large dataset of questions of known difficulty for training. Therefore, they cannot be used if such a dataset is not available ( for new courses on an e-learning platform). In this work, we experiment with the possibility of performing QDE from text in an unsupervised manner. Specifically, we use the uncertainty of calibrated question answering models as a proxy of human-perceived difficulty. Our experiments show promising results, suggesting that model uncertainty could be successfully leveraged to perform QDE from text, reducing both costs and elapsed time.
Predicting the difficulty of domain-specific vocabulary is an important task towards a better understanding of a domain, and to enhance the communication between lay people and experts. We investigate German closed noun compounds and focus on the int eraction of compound-based lexical features (such as frequency and productivity) and terminology-based features (contrasting domain-specific and general language) across word representations and classifiers. Our prediction experiments complement insights from classification using (a) manually designed features to characterise termhood and compound formation and (b) compound and constituent word embeddings. We find that for a broad binary distinction into easy' vs. difficult' general-language compound frequency is sufficient, but for a more fine-grained four-class distinction it is crucial to include contrastive termhood features and compound and constituent features.
In this paper, we present a Modern Standard Arabic (MSA) Sentence difficulty classifier, which predicts the difficulty of sentences for language learners using either the CEFR proficiency levels or the binary classification as simple or complex. We c ompare the use of sentence embeddings of different kinds (fastText, mBERT , XLM-R and Arabic-BERT), as well as traditional language features such as POS tags, dependency trees, readability scores and frequency lists for language learners. Our best results have been achieved using fined-tuned Arabic-BERT. The accuracy of our 3-way CEFR classification is F-1 of 0.80 and 0.75 for Arabic-Bert and XLM-R classification respectively and 0.71 Spearman correlation for regression. Our binary difficulty classifier reaches F-1 0.94 and F-1 0.98 for sentence-pair semantic similarity classifier.
Abstract Identifying factors that make certain languages harder to model than others is essential to reach language equality in future Natural Language Processing technologies. Free-order case-marking languages, such as Russian, Latin, or Tamil, have proved more challenging than fixed-order languages for the tasks of syntactic parsing and subject-verb agreement prediction. In this work, we investigate whether this class of languages is also more difficult to translate by state-of-the-art Neural Machine Translation (NMT) models. Using a variety of synthetic languages and a newly introduced translation challenge set, we find that word order flexibility in the source language only leads to a very small loss of NMT quality, even though the core verb arguments become impossible to disambiguate in sentences without semantic cues. The latter issue is indeed solved by the addition of case marking. However, in medium- and low-resource settings, the overall NMT quality of fixed-order languages remains unmatched.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا