Do you want to publish a course? Click here

Exploring Task Difficulty for Few-Shot Relation Extraction

استكشاف صعوبة المهمة لاستخراج علاقة ذات طلقة قليلة

351   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Few-shot relation extraction (FSRE) focuses on recognizing novel relations by learning with merely a handful of annotated instances. Meta-learning has been widely adopted for such a task, which trains on randomly generated few-shot tasks to learn generic data representations. Despite impressive results achieved, existing models still perform suboptimally when handling hard FSRE tasks, where the relations are fine-grained and similar to each other. We argue this is largely because existing models do not distinguish hard tasks from easy ones in the learning process. In this paper, we introduce a novel approach based on contrastive learning that learns better representations by exploiting relation label information. We further design a method that allows the model to adaptively learn how to focus on hard tasks. Experiments on two standard datasets demonstrate the effectiveness of our method.



References used
https://aclanthology.org/
rate research

Read More

Document-level event extraction is critical to various natural language processing tasks for providing structured information. Existing approaches by sequential modeling neglect the complex logic structures for long texts. In this paper, we leverage the entity interactions and sentence interactions within long documents and transform each document into an undirected unweighted graph by exploiting the relationship between sentences. We introduce the Sentence Community to represent each event as a subgraph. Furthermore, our framework SCDEE maintains the ability to extract multiple events by sentence community detection using graph attention networks and alleviate the role overlapping issue by predicting arguments in terms of roles. Experiments demonstrate that our framework achieves competitive results over state-of-the-art methods on the large-scale document-level event extraction dataset.
Low-resource Relation Extraction (LRE) aims to extract relation facts from limited labeled corpora when human annotation is scarce. Existing works either utilize self-training scheme to generate pseudo labels that will cause the gradual drift problem , or leverage meta-learning scheme which does not solicit feedback explicitly. To alleviate selection bias due to the lack of feedback loops in existing LRE learning paradigms, we developed a Gradient Imitation Reinforcement Learning method to encourage pseudo label data to imitate the gradient descent direction on labeled data and bootstrap its optimization capability through trial and error. We also propose a framework called GradLRE, which handles two major scenarios in low-resource relation extraction. Besides the scenario where unlabeled data is sufficient, GradLRE handles the situation where no unlabeled data is available, by exploiting a contextualized augmentation method to generate data. Experimental results on two public datasets demonstrate the effectiveness of GradLRE on low resource relation extraction when comparing with baselines.
In recent years, few-shot models have been applied successfully to a variety of NLP tasks. Han et al. (2018) introduced a few-shot learning framework for relation classification, and since then, several models have surpassed human performance on this task, leading to the impression that few-shot relation classification is solved. In this paper we take a deeper look at the efficacy of strong few-shot classification models in the more common relation extraction setting, and show that typical few-shot evaluation metrics obscure a wide variability in performance across relations. In particular, we find that state of the art few-shot relation classification models overly rely on entity type information, and propose modifications to the training routine to encourage models to better discriminate between relations involving similar entity types.
Scientific documents are replete with measurements mentioned in various formats and styles. As such, in a document with multiple quantities and measured entities, the task of associating each quantity to its corresponding measured entity is challengi ng. Thus, it is necessary to have a method to efficiently extract all measurements and attributes related to them. To this end, in this paper, we propose a novel model for the task of measurement relation extraction (MRE) whose goal is to recognize the relation between measured entities, quantities, and conditions mentioned in a document. Our model employs a deep translation-based architecture to dynamically induce the important words in the document to classify the relation between a pair of entities. Furthermore, we introduce a novel regularization technique based on Information Bottleneck (IB) to filter out the noisy information from the induced set of important words. Our experiments on the recent SemEval 2021 Task 8 datasets reveal the effectiveness of the proposed model.
We explore few-shot learning (FSL) for relation classification (RC). Focusing on the realistic scenario of FSL, in which a test instance might not belong to any of the target categories (none-of-the-above, [NOTA]), we first revisit the recent popular dataset structure for FSL, pointing out its unrealistic data distribution. To remedy this, we propose a novel methodology for deriving more realistic few-shot test data from available datasets for supervised RC, and apply it to the TACRED dataset. This yields a new challenging benchmark for FSL-RC, on which state of the art models show poor performance. Next, we analyze classification schemes within the popular embedding-based nearest-neighbor approach for FSL, with respect to constraints they impose on the embedding space. Triggered by this analysis, we propose a novel classification scheme in which the NOTA category is represented as learned vectors, shown empirically to be an appealing option for FSL.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا