Do you want to publish a course? Click here

Transformers that are pre-trained on multilingual corpora, such as, mBERT and XLM-RoBERTa, have achieved impressive cross-lingual transfer capabilities. In the zero-shot transfer setting, only English training data is used, and the fine-tuned model i s evaluated on another target language. While this works surprisingly well, substantial variance has been observed in target language performance between different fine-tuning runs, and in the zero-shot setup, no target-language development data is available to select among multiple fine-tuned models. Prior work has relied on English dev data to select among models that are fine-tuned with different learning rates, number of steps and other hyperparameters, often resulting in suboptimal choices. In this paper, we show that it is possible to select consistently better models when small amounts of annotated data are available in auxiliary pivot languages. We propose a machine learning approach to model selection that uses the fine-tuned model's own internal representations to predict its cross-lingual capabilities. In extensive experiments we find that this method consistently selects better models than English validation data across twenty five languages (including eight low-resource languages), and often achieves results that are comparable to model selection using target language development data.
Multilingual language models achieve impressive zero-shot accuracies in many languages in complex tasks such as Natural Language Inference (NLI). Examples in NLI (and equivalent complex tasks) often pertain to various types of sub-tasks, requiring di fferent kinds of reasoning. Certain types of reasoning have proven to be more difficult to learn in a monolingual context, and in the crosslingual context, similar observations may shed light on zero-shot transfer efficiency and few-shot sample selection. Hence, to investigate the effects of types of reasoning on transfer performance, we propose a category-annotated multilingual NLI dataset and discuss the challenges to scale monolingual annotations to multiple languages. We statistically observe interesting effects that the confluence of reasoning types and language similarities have on transfer performance.
Recent multilingual pre-trained language models have achieved remarkable zero-shot performance, where the model is only finetuned on one source language and directly evaluated on target languages. In this work, we propose a self-learning framework th at further utilizes unlabeled data of target languages, combined with uncertainty estimation in the process to select high-quality silver labels. Three different uncertainties are adapted and analyzed specifically for the cross lingual transfer: Language Heteroscedastic/Homoscedastic Uncertainty (LEU/LOU), Evidential Uncertainty (EVI). We evaluate our framework with uncertainties on two cross-lingual tasks including Named Entity Recognition (NER) and Natural Language Inference (NLI) covering 40 languages in total, which outperforms the baselines significantly by 10 F1 for NER on average and 2.5 accuracy for NLI.
Adapter modules have emerged as a general parameter-efficient means to specialize a pretrained encoder to new domains. Massively multilingual transformers (MMTs) have particularly benefited from additional training of language-specific adapters. Howe ver, this approach is not viable for the vast majority of languages, due to limitations in their corpus size or compute budgets. In this work, we propose MAD-G (Multilingual ADapter Generation), which contextually generates language adapters from language representations based on typological features. In contrast to prior work, our time- and space-efficient MAD-G approach enables (1) sharing of linguistic knowledge across languages and (2) zero-shot inference by generating language adapters for unseen languages. We thoroughly evaluate MAD-G in zero-shot cross-lingual transfer on part-of-speech tagging, dependency parsing, and named entity recognition. While offering (1) improved fine-tuning efficiency (by a factor of around 50 in our experiments), (2) a smaller parameter budget, and (3) increased language coverage, MAD-G remains competitive with more expensive methods for language-specific adapter training across the board. Moreover, it offers substantial benefits for low-resource languages, particularly on the NER task in low-resource African languages. Finally, we demonstrate that MAD-G's transfer performance can be further improved via: (i) multi-source training, i.e., by generating and combining adapters of multiple languages with available task-specific training data; and (ii) by further fine-tuning generated MAD-G adapters for languages with monolingual data.
We experiment with XLM RoBERTa for Word in Context Disambiguation in the Multi Lingual and Cross Lingual setting so as to develop a single model having knowledge about both settings. We solve the problem as a binary classification problem and also ex periment with data augmentation and adversarial training techniques. In addition, we also experiment with a 2-stage training technique. Our approaches prove to be beneficial for better performance and robustness.
This paper studies zero-shot cross-lingual transfer of vision-language models. Specifically, we focus on multilingual text-to-video search and propose a Transformer-based model that learns contextual multilingual multimodal embeddings. Under a zero-s hot setting, we empirically demonstrate that performance degrades significantly when we query the multilingual text-video model with non-English sentences. To address this problem, we introduce a multilingual multimodal pre-training strategy, and collect a new multilingual instructional video dataset (Multi-HowTo100M) for pre-training. Experiments on VTT show that our method significantly improves video search in non-English languages without additional annotations. Furthermore, when multilingual annotations are available, our method outperforms recent baselines by a large margin in multilingual text-to-video search on VTT and VATEX; as well as in multilingual text-to-image search on Multi30K. Our model and Multi-HowTo100M is available at http://github.com/berniebear/Multi-HT100M.
We address the task of automatic hate speech detection for low-resource languages. Rather than collecting and annotating new hate speech data, we show how to use cross-lingual transfer learning to leverage already existing data from higher-resource l anguages. Using bilingual word embeddings based classifiers we achieve good performance on the target language by training only on the source dataset. Using our transferred system we bootstrap on unlabeled target language data, improving the performance of standard cross-lingual transfer approaches. We use English as a high resource language and German as the target language for which only a small amount of annotated corpora are available. Our results indicate that cross-lingual transfer learning together with our approach to leverage additional unlabeled data is an effective way of achieving good performance on low-resource target languages without the need for any target-language annotations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا