Do you want to publish a course? Click here

Speech translation (ST) has lately received growing interest for the generation of subtitles without the need for an intermediate source language transcription and timing (i.e. captions). However, the joint generation of source captions and target su btitles does not only bring potential output quality advantages when the two decoding processes inform each other, but it is also often required in multilingual scenarios. In this work, we focus on ST models which generate consistent captions-subtitles in terms of structure and lexical content. We further introduce new metrics for evaluating subtitling consistency. Our findings show that joint decoding leads to increased performance and consistency between the generated captions and subtitles while still allowing for sufficient flexibility to produce subtitles conforming to language-specific needs and norms.
Leveraging large-scale unlabeled web videos such as instructional videos for pre-training followed by task-specific finetuning has become the de facto approach for many video-and-language tasks. However, these instructional videos are very noisy, the accompanying ASR narrations are often incomplete, and can be irrelevant to or temporally misaligned with the visual content, limiting the performance of the models trained on such data. To address these issues, we propose an improved video-and-language pre-training method that first adds automatically-extracted dense region captions from the video frames as auxiliary text input, to provide informative visual cues for learning better video and language associations. Second, to alleviate the temporal misalignment issue, our method incorporates an entropy minimization-based constrained attention loss, to encourage the model to automatically focus on the correct caption from a pool of candidate ASR captions. Our overall approach is named DeCEMBERT (Dense Captions and Entropy Minimization). Comprehensive experiments on three video-and-language tasks (text-to-video retrieval, video captioning, and video question answering) across five datasets demonstrate that our approach outperforms previous state-of-the-art methods. Ablation studies on pre-training and downstream tasks show that adding dense captions and constrained attention loss help improve the model performance. Lastly, we also provide attention visualization to show the effect of applying the proposed constrained attention loss.
Automatic image captioning has improved significantly over the last few years, but the problem is far from being solved, with state of the art models still often producing low quality captions when used in the wild. In this paper, we focus on the tas k of Quality Estimation (QE) for image captions, which attempts to model the caption quality from a human perspective and *without* access to ground-truth references, so that it can be applied at prediction time to detect low-quality captions produced on *previously unseen images*. For this task, we develop a human evaluation process that collects coarse-grained caption annotations from crowdsourced users, which is then used to collect a large scale dataset spanning more than 600k caption quality ratings. We then carefully validate the quality of the collected ratings and establish baseline models for this new QE task. Finally, we further collect fine-grained caption quality annotations from trained raters, and use them to demonstrate that QE models trained over the coarse ratings can effectively detect and filter out low-quality image captions, thereby improving the user experience from captioning systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا