Previous work on crosslingual Relation and Event Extraction (REE) suffers from the monolingual bias issue due to the training of models on only the source language data. An approach to overcome this issue is to use unlabeled data in the target langua
ge to aid the alignment of crosslingual representations, i.e., via fooling a language discriminator. However, as this approach does not condition on class information, a target language example of a class could be incorrectly aligned to a source language example of a different class. To address this issue, we propose a novel crosslingual alignment method that leverages class information of REE tasks for representation learning. In particular, we propose to learn two versions of representation vectors for each class in an REE task based on either source or target language examples. Representation vectors for corresponding classes will then be aligned to achieve class-aware alignment for crosslingual representations. In addition, we propose to further align representation vectors for language-universal word categories (i.e., parts of speech and dependency relations). As such, a novel filtering mechanism is presented to facilitate the learning of word category representations from contextualized representations on input texts based on adversarial learning. We conduct extensive crosslingual experiments with English, Chinese, and Arabic over REE tasks. The results demonstrate the benefits of the proposed method that significantly advances the state-of-the-art performance in these settings.
Irrespective of the success of the deep learning-based mixed-domain transfer learning approach for solving various Natural Language Processing tasks, it does not lend a generalizable solution for detecting misinformation from COVID-19 social media da
ta. Due to the inherent complexity of this type of data, caused by its dynamic (context evolves rapidly), nuanced (misinformation types are often ambiguous), and diverse (skewed, fine-grained, and overlapping categories) nature, it is imperative for an effective model to capture both the local and global context of the target domain. By conducting a systematic investigation, we show that: (i) the deep Transformer-based pre-trained models, utilized via the mixed-domain transfer learning, are only good at capturing the local context, thus exhibits poor generalization, and (ii) a combination of shallow network-based domain-specific models and convolutional neural networks can efficiently extract local as well as global context directly from the target data in a hierarchical fashion, enabling it to offer a more generalizable solution.
When we are interested in a certain domain, we can collect and analyze data from the Internet. The newly collected data is not labeled, so the use of labeled data is hoped to be helpful to the new data. We perform name entity recognition (NER) and as
pect-based sentiment analysis (ABSA) in multi-task learning, and combine parameter generation network and DANN architecture to build the model. In the NER task, the data is labeled with Tie, Break, and the task weight is adjusted according to the loss change rate of each task using Dynamic Weight Average (DWA). This study used two different source domain data sets. The experimental results show that Tie, Break can improve the results of the model; DWA can have better performance in the results; the combination of parameter generation network and gradient reversal layer can be used for every good learning in different domain.
Deep neural language models such as BERT have enabled substantial recent advances in many natural language processing tasks. However, due to the effort and computational cost involved in their pre-training, such models are typically introduced only f
or a small number of high-resource languages such as English. While multilingual models covering large numbers of languages are available, recent work suggests monolingual training can produce better models, and our understanding of the tradeoffs between mono- and multilingual training is incomplete. In this paper, we introduce a simple, fully automated pipeline for creating language-specific BERT models from Wikipedia data and introduce 42 new such models, most for languages up to now lacking dedicated deep neural language models. We assess the merits of these models using cloze tests and the state-of-the-art UDify parser on Universal Dependencies data, contrasting performance with results using the multilingual BERT (mBERT) model. We find that the newly introduced WikiBERT models outperform mBERT in cloze tests for nearly all languages, and that UDify using WikiBERT models outperforms the parser using mBERT on average, with the language-specific models showing substantially improved performance for some languages, yet limited improvement or a decrease in performance for others. All of the methods and models introduced in this work are available under open licenses from https://github.com/turkunlp/wikibert.
We address the task of automatic hate speech detection for low-resource languages. Rather than collecting and annotating new hate speech data, we show how to use cross-lingual transfer learning to leverage already existing data from higher-resource l
anguages. Using bilingual word embeddings based classifiers we achieve good performance on the target language by training only on the source dataset. Using our transferred system we bootstrap on unlabeled target language data, improving the performance of standard cross-lingual transfer approaches. We use English as a high resource language and German as the target language for which only a small amount of annotated corpora are available. Our results indicate that cross-lingual transfer learning together with our approach to leverage additional unlabeled data is an effective way of achieving good performance on low-resource target languages without the need for any target-language annotations.
The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR
) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Convolutional Neural Network (CNN) has been chosen as a better option for the training process because it produces a high accuracy. The final accuracy has reached 91.18% in five different classes. The results are discussed in terms of the probability of accuracy for each class in the image classification in percentage. Cats class got 99.6 %, while houses class got 100 %.Other types of classes were with an average score of 90 % and above.