Do you want to publish a course? Click here

Relational triple extraction is a crucial task for knowledge graph construction. Existing methods mainly focused on explicit relational triples that are directly expressed, but usually suffer from ignoring implicit triples that lack explicit expressi ons. This will lead to serious incompleteness of the constructed knowledge graphs. Fortunately, other triples in the sentence provide supplementary information for discovering entity pairs that may have implicit relations. Also, the relation types between the implicitly connected entity pairs can be identified with relational reasoning patterns in the real world. In this paper, we propose a unified framework to jointly extract explicit and implicit relational triples. To explore entity pairs that may be implicitly connected by relations, we propose a binary pointer network to extract overlapping relational triples relevant to each word sequentially and retain the information of previously extracted triples in an external memory. To infer the relation types of implicit relational triples, we propose to introduce real-world relational reasoning patterns in our model and capture these patterns with a relation network. We conduct experiments on several benchmark datasets, and the results prove the validity of our method.
Although pre-trained big models (e.g., BERT, ERNIE, XLNet, GPT3 etc.) have delivered top performance in Seq2seq modeling, their deployments in real-world applications are often hindered by the excessive computations and memory demand involved. For ma ny applications, including named entity recognition (NER), matching the state-of-the-art result under budget has attracted considerable attention. Drawing power from the recent advance in knowledge distillation (KD), this work presents a novel distillation scheme to efficiently transfer the knowledge learned from big models to their more affordable counterpart. Our solution highlights the construction of surrogate labels through the k-best Viterbi algorithm to distill knowledge from the teacher model. To maximally assimilate knowledge into the student model, we propose a multi-grained distillation scheme, which integrates cross entropy involved in conditional random field (CRF) and fuzzy learning.To validate the effectiveness of our proposal, we conducted a comprehensive evaluation on five NER benchmarks, reporting cross-the-board performance gains relative to competing prior-arts. We further discuss ablation results to dissect our gains.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا