Do you want to publish a course? Click here

Neural language models typically tokenise input text into sub-word units to achieve an open vocabulary. The standard approach is to use a single canonical tokenisation at both train and test time. We suggest that this approach is unsatisfactory and m ay bottleneck our evaluation of language model performance. Using only the one-best tokenisation ignores tokeniser uncertainty over alternative tokenisations, which may hurt model out-of-domain performance. In this paper, we argue that instead, language models should be evaluated on their marginal likelihood over tokenisations. We compare different estimators for the marginal likelihood based on sampling, and show that it is feasible to estimate the marginal likelihood with a manageable number of samples. We then evaluate a pretrained language model on both the one-best-tokenisation and marginal perplexities, and show that the marginal perplexity can be significantly better than the one best, especially on out-of-domain data. We link this difference in perplexity to the tokeniser uncertainty as measured by tokeniser entropy. We discuss some implications of our results for language model training and evaluation, particularly with regard to tokenisation robustness.
Recent state-of-the-art (SOTA) effective neural network methods and fine-tuning methods based on pre-trained models (PTM) have been used in Chinese word segmentation (CWS), and they achieve great results. However, previous works focus on training the models with the fixed corpus at every iteration. The intermediate generated information is also valuable. Besides, the robustness of the previous neural methods is limited by the large-scale annotated data. There are a few noises in the annotated corpus. Limited efforts have been made by previous studies to deal with such problems. In this work, we propose a self-supervised CWS approach with a straightforward and effective architecture. First, we train a word segmentation model and use it to generate the segmentation results. Then, we use a revised masked language model (MLM) to evaluate the quality of the segmentation results based on the predictions of the MLM. Finally, we leverage the evaluations to aid the training of the segmenter by improved minimum risk training. Experimental results show that our approach outperforms previous methods on 9 different CWS datasets with single criterion training and multiple criteria training and achieves better robustness.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا