Do you want to publish a course? Click here

Large language models benefit from training with a large amount of unlabeled text, which gives them increasingly fluent and diverse generation capabilities. However, using these models for text generation that takes into account target attributes, su ch as sentiment polarity or specific topics, remains a challenge. We propose a simple and flexible method for controlling text generation by aligning disentangled attribute representations. In contrast to recent efforts on training a discriminator to perturb the token level distribution for an attribute, we use the same data to learn an alignment function to guide the pre-trained, non-controlled language model to generate texts with the target attribute without changing the original language model parameters. We evaluate our method on sentiment- and topic-controlled generation, and show large performance gains over previous methods while retaining fluency and diversity.
In Visual Question Answering (VQA), existing bilinear methods focus on the interaction between images and questions. As a result, the answers are either spliced into the questions or utilized as labels only for classification. On the other hand, tril inear models such as the CTI model efficiently utilize the inter-modality information between answers, questions, and images, while ignoring intra-modality information. Inspired by this observation, we propose a new trilinear interaction framework called MIRTT (Learning Multimodal Interaction Representations from Trilinear Transformers), incorporating the attention mechanisms for capturing inter-modality and intra-modality relationships. Moreover, we design a two-stage workflow where a bilinear model reduces the free-form, open-ended VQA problem into a multiple-choice VQA problem. Furthermore, to obtain accurate and generic multimodal representations, we pre-train MIRTT with masked language prediction. Our method achieves state-of-the-art performance on the Visual7W Telling task and VQA-1.0 Multiple Choice task and outperforms bilinear baselines on the VQA-2.0, TDIUC and GQA datasets.
Generating long text conditionally depending on the short input text has recently attracted more and more research efforts. Most existing approaches focus more on introducing extra knowledge to supplement the short input text, but ignore the coherenc e issue of the generated texts. To address aforementioned research issue, this paper proposes a novel two-stage approach to generate coherent long text. Particularly, we first build a document-level path for each output text with each sentence embedding as its node, and a revised self-organising map (SOM) is proposed to cluster similar nodes of a family of document-level paths to construct the directed semantic graph. Then, three subgraph alignment methods are proposed to extract the maximum matching paths or subgraphs. These directed subgraphs are considered to well preserve extra but relevant content to the short input text, and then they are decoded by the employed pre-trained model to generate coherent long text. Extensive experiments have been performed on three real-world datasets, and the promising results demonstrate that the proposed approach is superior to the state-of-the-art approaches w.r.t. a number of evaluation criteria.
Generating texts in scientific papers requires not only capturing the content contained within the given input but also frequently acquiring the external information called context. We push forward the scientific text generation by proposing a new ta sk, namely context-aware text generation in the scientific domain, aiming at exploiting the contributions of context in generated texts. To this end, we present a novel challenging large-scale Scientific Paper Dataset for ConteXt-Aware Text Generation (SciXGen), consisting of well-annotated 205,304 papers with full references to widely-used objects (e.g., tables, figures, algorithms) in a paper. We comprehensively benchmark, using state-of-the-arts, the efficacy of our newly constructed SciXGen dataset in generating description and paragraph. Our dataset and benchmarks will be made publicly available to hopefully facilitate the scientific text generation research.
Recent text generation research has increasingly focused on open-ended domains such as story and poetry generation. Because models built for such tasks are difficult to evaluate automatically, most researchers in the space justify their modeling choi ces by collecting crowdsourced human judgments of text quality (e.g., Likert scores of coherence or grammaticality) from Amazon Mechanical Turk (AMT). In this paper, we first conduct a survey of 45 open-ended text generation papers and find that the vast majority of them fail to report crucial details about their AMT tasks, hindering reproducibility. We then run a series of story evaluation experiments with both AMT workers and English teachers and discover that even with strict qualification filters, AMT workers (unlike teachers) fail to distinguish between model-generated text and human-generated references. We show that AMT worker judgments improve when they are shown model-generated output alongside human-generated references, which enables the workers to better calibrate their ratings. Finally, interviews with the English teachers provide deeper insights into the challenges of the evaluation process, particularly when rating model-generated text.
Exposure bias has been regarded as a central problem for auto-regressive language models (LM). It claims that teacher forcing would cause the test-time generation to be incrementally distorted due to the training-generation discrepancy. Although a lo t of algorithms have been proposed to avoid teacher forcing and therefore alleviate exposure bias, there is little work showing how serious the exposure bias problem actually is. In this work, we focus on the task of open-ended language generation, propose metrics to quantify the impact of exposure bias in the aspects of quality, diversity, and consistency. Our key intuition is that if we feed ground-truth data prefixes (instead of prefixes generated by the model itself) into the model and ask it to continue the generation, the performance should become much better because the training-generation discrepancy in the prefix is removed. Both automatic and human evaluations are conducted in our experiments. On the contrary to the popular belief in exposure bias, we find that the the distortion induced by the prefix discrepancy is limited, and does not seem to be incremental during the generation. Moreover, our analysis reveals an interesting self-recovery ability of the LM, which we hypothesize to be countering the harmful effects from exposure bias.
We propose a shared task on training instance selection for few-shot neural text generation. Large-scale pretrained language models have led to dramatic improvements in few-shot text generation. Nonetheless, almost all previous work simply applies ra ndom sampling to select the few-shot training instances. Little to no attention has been paid to the selection strategies and how they would affect model performance. Studying the selection strategy can help us (1) make the most use of our annotation budget in downstream tasks and (2) better benchmark few-shot text generative models. We welcome submissions that present their selection strategies and the effects on the generation quality.
We present an end-to-end neural approach to generate English sentences from formal meaning representations, Discourse Representation Structures (DRSs). We use a rather standard bi-LSTM sequence-to-sequence model, work with a linearized DRS input repr esentation, and evaluate character-level and word-level decoders. We obtain very encouraging results in terms of reference-based automatic metrics such as BLEU. But because such metrics only evaluate the surface level of generated output, we develop a new metric, ROSE, that targets specific semantic phenomena. We do this with five DRS generation challenge sets focusing on tense, grammatical number, polarity, named entities and quantities. The aim of these challenge sets is to assess the neural generator's systematicity and generalization to unseen inputs.
Most of privacy protection studies for textual data focus on removing explicit sensitive identifiers. However, personal writing style, as a strong indicator of the authorship, is often neglected. Recent studies, such as SynTF, have shown promising re sults on privacy-preserving text mining. However, their anonymization algorithm can only output numeric term vectors which are difficult for the recipients to interpret. We propose a novel text generation model with a two-set exponential mechanism for authorship anonymization. By augmenting the semantic information through a REINFORCE training reward function, the model can generate differentially private text that has a close semantic and similar grammatical structure to the original text while removing personal traits of the writing style. It does not assume any conditioned labels or paralleled text data for training. We evaluate the performance of the proposed model on the real-life peer reviews dataset and the Yelp review dataset. The result suggests that our model outperforms the state-of-the-art on semantic preservation, authorship obfuscation, and stylometric transformation.
Conditional text generation often requires lexical constraints, i.e., which words should or shouldn't be included in the output text. While the dominant recipe for conditional text generation has been large-scale pretrained language models that are f inetuned on the task-specific training data, such models do not learn to follow the underlying constraints reliably, even when supervised with large amounts of task-specific examples. We propose NeuroLogic Decoding, a simple yet effective algorithm that enables neural language models -- supervised or not -- to generate fluent text while satisfying complex lexical constraints. Our approach is powerful yet efficient. It handles any set of lexical constraints that is expressible under predicate logic, while its asymptotic runtime is equivalent to conventional beam search. Empirical results on four benchmarks show that NeuroLogic Decoding outperforms previous approaches, including algorithms that handle a subset of our constraints. Moreover, we find that unsupervised models with NeuroLogic Decoding often outperform supervised models with conventional decoding, even when the latter is based on considerably larger networks. Our results suggest the limit of large-scale neural networks for fine-grained controllable generation and the promise of inference-time algorithms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا