Do you want to publish a course? Click here

Building the Directed Semantic Graph for Coherent Long Text Generation

بناء الرسم البياني الدلالي الموجه لتوليد النص طويل متماسك

277   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Generating long text conditionally depending on the short input text has recently attracted more and more research efforts. Most existing approaches focus more on introducing extra knowledge to supplement the short input text, but ignore the coherence issue of the generated texts. To address aforementioned research issue, this paper proposes a novel two-stage approach to generate coherent long text. Particularly, we first build a document-level path for each output text with each sentence embedding as its node, and a revised self-organising map (SOM) is proposed to cluster similar nodes of a family of document-level paths to construct the directed semantic graph. Then, three subgraph alignment methods are proposed to extract the maximum matching paths or subgraphs. These directed subgraphs are considered to well preserve extra but relevant content to the short input text, and then they are decoded by the employed pre-trained model to generate coherent long text. Extensive experiments have been performed on three real-world datasets, and the promising results demonstrate that the proposed approach is superior to the state-of-the-art approaches w.r.t. a number of evaluation criteria.

References used
https://aclanthology.org/
rate research

Read More

AM dependency parsing is a method for neural semantic graph parsing that exploits the principle of compositionality. While AM dependency parsers have been shown to be fast and accurate across several graphbanks, they require explicit annotations of t he compositional tree structures for training. In the past, these were obtained using complex graphbank-specific heuristics written by experts. Here we show how they can instead be trained directly on the graphs with a neural latent-variable model, drastically reducing the amount and complexity of manual heuristics. We demonstrate that our model picks up on several linguistic phenomena on its own and achieves comparable accuracy to supervised training, greatly facilitating the use of AM dependency parsing for new sembanks.
This paper presents the first study on using large-scale pre-trained language models for automated generation of an event-level temporal graph for a document. Despite the huge success of neural pre-training methods in NLP tasks, its potential for tem poral reasoning over event graphs has not been sufficiently explored. Part of the reason is the difficulty in obtaining large training corpora with human-annotated events and temporal links. We address this challenge by using existing IE/NLP tools to automatically generate a large quantity (89,000) of system-produced document-graph pairs, and propose a novel formulation of the contextualized graph generation problem as a sequence-to-sequence mapping task. These strategies enable us to leverage and fine-tune pre-trained language models on the system-induced training data for the graph generation task. Our experiments show that our approach is highly effective in generating structurally and semantically valid graphs. Further, evaluation on a challenging hand-labeled, out-of-domain corpus shows that our method outperforms the closest existing method by a large margin on several metrics. We also show a downstream application of our approach by adapting it to answer open-ended temporal questions in a reading comprehension setting.
The dominant paradigm for semantic parsing in recent years is to formulate parsing as a sequence-to-sequence task, generating predictions with auto-regressive sequence decoders. In this work, we explore an alternative paradigm. We formulate semantic parsing as a dependency parsing task, applying graph-based decoding techniques developed for syntactic parsing. We compare various decoding techniques given the same pre-trained Transformer encoder on the TOP dataset, including settings where training data is limited or contains only partially-annotated examples. We find that our graph-based approach is competitive with sequence decoders on the standard setting, and offers significant improvements in data efficiency and settings where partially-annotated data is available.
Weakly-supervised text classification has received much attention in recent years for it can alleviate the heavy burden of annotating massive data. Among them, keyword-driven methods are the mainstream where user-provided keywords are exploited to ge nerate pseudo-labels for unlabeled texts. However, existing methods treat keywords independently, thus ignore the correlation among them, which should be useful if properly exploited. In this paper, we propose a novel framework called ClassKG to explore keyword-keyword correlation on keyword graph by GNN. Our framework is an iterative process. In each iteration, we first construct a keyword graph, so the task of assigning pseudo labels is transformed to annotating keyword subgraphs. To improve the annotation quality, we introduce a self-supervised task to pretrain a subgraph annotator, and then finetune it. With the pseudo labels generated by the subgraph annotator, we then train a text classifier to classify the unlabeled texts. Finally, we re-extract keywords from the classified texts. Extensive experiments on both long-text and short-text datasets show that our method substantially outperforms the existing ones.
Graph convolutional networks (GCNs) have been applied recently to text classification and produced an excellent performance. However, existing GCN-based methods do not assume an explicit latent semantic structure of documents, making learned represen tations less effective and difficult to interpret. They are also transductive in nature, thus cannot handle out-of-graph documents. To address these issues, we propose a novel model named inductive Topic Variational Graph Auto-Encoder (T-VGAE), which incorporates a topic model into variational graph-auto-encoder (VGAE) to capture the hidden semantic information between documents and words. T-VGAE inherits the interpretability of the topic model and the efficient information propagation mechanism of VGAE. It learns probabilistic representations of words and documents by jointly encoding and reconstructing the global word-level graph and bipartite graphs of documents, where each document is considered individually and decoupled from the global correlation graph so as to enable inductive learning. Our experiments on several benchmark datasets show that our method outperforms the existing competitive models on supervised and semi-supervised text classification, as well as unsupervised text representation learning. In addition, it has higher interpretability and is able to deal with unseen documents.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا