Do you want to publish a course? Click here

Our paper aims to automate the generation of medical reports from chest X-ray image inputs, a critical yet time-consuming task for radiologists. Existing medical report generation efforts emphasize producing human-readable reports, yet the generated text may not be well aligned to the clinical facts. Our generated medical reports, on the other hand, are fluent and, more importantly, clinically accurate. This is achieved by our fully differentiable and end-to-end paradigm that contains three complementary modules: taking the chest X-ray images and clinical history document of patients as inputs, our classification module produces an internal checklist of disease-related topics, referred to as enriched disease embedding; the embedding representation is then passed to our transformer-based generator, to produce the medical report; meanwhile, our generator also creates a weighted embedding representation, which is fed to our interpreter to ensure consistency with respect to disease-related topics. Empirical evaluations demonstrate very promising results achieved by our approach on commonly-used metrics concerning language fluency and clinical accuracy. Moreover, noticeable performance gains are consistently observed when additional input information is available, such as the clinical document and extra scans from different views.
Earning calls are among important resources for investors and analysts for updating their price targets. Firms usually publish corresponding transcripts soon after earnings events. However, raw transcripts are often too long and miss the coherent str ucture. To enhance the clarity, analysts write well-structured reports for some important earnings call events by analyzing them, requiring time and effort. In this paper, we propose TATSum (Template-Aware aTtention model for Summarization), a generalized neural summarization approach for structured report generation, and evaluate its performance in the earnings call domain. We build a large corpus with thousands of transcripts and reports using historical earnings events. We first generate a candidate set of reports from the corpus as potential soft templates which do not impose actual rules on the output. Then, we employ an encoder model with margin-ranking loss to rank the candidate set and select the best quality template. Finally, the transcript and the selected soft template are used as input in a seq2seq framework for report generation. Empirical results on the earnings call dataset show that our model significantly outperforms state-of-the-art models in terms of informativeness and structure.
To combat COVID-19, both clinicians and scientists need to digest the vast amount of relevant biomedical knowledge in literature to understand the disease mechanism and the related biological functions. We have developed a novel and comprehensive kno wledge discovery framework, COVID-KG to extract fine-grained multimedia knowledge elements (entities, relations and events) from scientific literature. We then exploit the constructed multimedia knowledge graphs (KGs) for question answering and report generation, using drug repurposing as a case study. Our framework also provides detailed contextual sentences, subfigures, and knowledge subgraphs as evidence. All of the data, KGs, reports.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا