تكسب المكالمات هي من بين الموارد المهمة للمستثمرين والمحللين لتحديث أهداف الأسعار الخاصة بهم. الشركات عادة ما تنشر النصوص المقابلة قريبا بعد أحداث الأرباح. ومع ذلك، فإن النصوص الخام هي في كثير من الأحيان طويلة جدا وتفوت الهيكل المتماسك. لتعزيز الوضوح، يكتب المحللون تقارير منظما جيدا لبعض أحداث استدعاء الأرباح الهامة من خلال تحليلها، تتطلب الوقت والجهد. في هذه الورقة، نقترح تاتسوم (نموذج الاهتمام بإنفاذ القالب للتلخيص)، ونهج تلخيص عصبي معمم لتوليد التقرير المنظم، وتقييم أدائه في مجال مكالمات الأرباح. نحن نبني كوربا كبيرا مع الآلاف من النصوص والتقارير باستخدام أحداث الأرباح التاريخية. نقوم أولا بتوليد مجموعة مرشحة من التقارير من Corpus كقوالب ناعمة محتملة لا تفرض قواعد فعلية على الإخراج. بعد ذلك، نوظف نموذج تشفير مع فقدان الهامش المرتبة لتحديد مجموعة المرشح وحدد أفضل قالب الجودة. أخيرا، يتم استخدام النص والقالب الناعم المحدد كإدخال في إطار SEQ2SEQ لتوليد التقرير. النتائج التجريبية على مجموعة بيانات المكالمات الأرباح تظهر أن نموذجنا يتفوق بشكل كبير على النماذج الحديثة من حيث المعلومات والهيكل.
Earning calls are among important resources for investors and analysts for updating their price targets. Firms usually publish corresponding transcripts soon after earnings events. However, raw transcripts are often too long and miss the coherent structure. To enhance the clarity, analysts write well-structured reports for some important earnings call events by analyzing them, requiring time and effort. In this paper, we propose TATSum (Template-Aware aTtention model for Summarization), a generalized neural summarization approach for structured report generation, and evaluate its performance in the earnings call domain. We build a large corpus with thousands of transcripts and reports using historical earnings events. We first generate a candidate set of reports from the corpus as potential soft templates which do not impose actual rules on the output. Then, we employ an encoder model with margin-ranking loss to rank the candidate set and select the best quality template. Finally, the transcript and the selected soft template are used as input in a seq2seq framework for report generation. Empirical results on the earnings call dataset show that our model significantly outperforms state-of-the-art models in terms of informativeness and structure.
References used
https://aclanthology.org/
Neural topic models (NTMs) apply deep neural networks to topic modelling. Despite their success, NTMs generally ignore two important aspects: (1) only document-level word count information is utilized for the training, while more fine-grained sentenc
Cross-attention is an important component of neural machine translation (NMT), which is always realized by dot-product attention in previous methods. However, dot-product attention only considers the pair-wise correlation between words, resulting in
Due to the development of modern computer technology and the increase in the number of online media users, we can see all kinds of posts and comments everywhere on the internet. Hope speech can not only inspire the creators but also make other viewer
In this paper we propose a contextual attention based model with two-stage fine-tune training using RoBERTa. First, we perform the first-stage fine-tune on corpus with RoBERTa, so that the model can learn some prior domain knowledge. Then we get the
In Arabic Language, diacritics are used to specify meanings as well as pronunciations. However, diacritics are often omitted from written texts, which increases the number of possible meanings and pronunciations. This leads to an ambiguous text and m