Do you want to publish a course? Click here

Bidirectional Encoder Representations from Transformers (BERT) has achieved state-of-the-art performances on several text classification tasks, such as GLUE and sentiment analysis. Recent work in the legal domain started to use BERT on tasks, such as legal judgement prediction and violation prediction. A common practise in using BERT is to fine-tune a pre-trained model on a target task and truncate the input texts to the size of the BERT input (e.g. at most 512 tokens). However, due to the unique characteristics of legal documents, it is not clear how to effectively adapt BERT in the legal domain. In this work, we investigate how to deal with long documents, and how is the importance of pre-training on documents from the same domain as the target task. We conduct experiments on the two recent datasets: ECHR Violation Dataset and the Overruling Task Dataset, which are multi-label and binary classification tasks, respectively. Importantly, on average the number of tokens in a document from the ECHR Violation Dataset is more than 1,600. While the documents in the Overruling Task Dataset are shorter (the maximum number of tokens is 204). We thoroughly compare several techniques for adapting BERT on long documents and compare different models pre-trained on the legal and other domains. Our experimental results show that we need to explicitly adapt BERT to handle long documents, as the truncation leads to less effective performance. We also found that pre-training on the documents that are similar to the target task would result in more effective performance on several scenario.
The paper describes the 3 NMT models submitted by the eTranslation team to the WMT 2021 news translation shared task. We developed systems in language pairs that are actively used in the European Commission's eTranslation service. In the WMT news tas k, recent years have seen a steady increase in the need for computational resources to train deep and complex architectures to produce competitive systems. We took a different approach and explored alternative strategies focusing on data selection and filtering to improve the performance of baseline systems. In the domain constrained task for the French--German language pair our approach resulted in the best system by a significant margin in BLEU. For the other two systems (English--German and English-Czech) we tried to build competitive models using standard best practices.
This paper describes the participation of the BSC team in the WMT2021's Multilingual Low-Resource Translation for Indo-European Languages Shared Task. The system aims to solve the Subtask 2: Wikipedia cultural heritage articles, which involves transl ation in four Romance languages: Catalan, Italian, Occitan and Romanian. The submitted system is a multilingual semi-supervised machine translation model. It is based on a pre-trained language model, namely XLM-RoBERTa, that is later fine-tuned with parallel data obtained mostly from OPUS. Unlike other works, we only use XLM to initialize the encoder and randomly initialize a shallow decoder. The reported results are robust and perform well for all tested languages.
Attention-based pre-trained language models such as GPT-2 brought considerable progress to end-to-end dialogue modelling. However, they also present considerable risks for task-oriented dialogue, such as lack of knowledge grounding or diversity. To a ddress these issues, we introduce modified training objectives for language model finetuning, and we employ massive data augmentation via back-translation to increase the diversity of the training data. We further examine the possibilities of combining data from multiples sources to improve performance on the target dataset. We carefully evaluate our contributions with both human and automatic methods. Our model substantially outperforms the baseline on the MultiWOZ data and shows competitive performance with state of the art in both automatic and human evaluation.
Task-agnostic pretraining objectives like masked language models or corrupted span prediction are applicable to a wide range of NLP downstream tasks (Raffel et al.,2019), but are outperformed by task-specific pretraining objectives like predicting ex tracted gap sentences on summarization (Zhang et al.,2020). We compare three summarization specific pretraining objectives with the task agnostic corrupted span prediction pretraining in controlled study. We also extend our study to a low resource and zero shot setup, to understand how many training examples are needed in order to ablate the task-specific pretraining without quality loss. Our results show that task-agnostic pretraining is sufficient for most cases which hopefully reduces the need for costly task-specific pretraining. We also report new state-of-the-art number for two summarization task using a T5 model with 11 billion parameters and an optimal beam search length penalty.
Humans can learn a new language task efficiently with only few examples, by leveraging their knowledge obtained when learning prior tasks. In this paper, we explore whether and how such cross-task generalization ability can be acquired, and further a pplied to build better few-shot learners across diverse NLP tasks. We introduce CrossFit, a problem setup for studying cross-task generalization ability, which standardizes seen/unseen task partitions, data access during different learning stages, and the evaluation protocols. To instantiate different seen/unseen task partitions in CrossFit and facilitate in-depth analysis, we present the NLP Few-shot Gym, a repository of 160 diverse few-shot NLP tasks created from open-access NLP datasets and converted to a unified text-to-text format. Our analysis reveals that the few-shot learning ability on unseen tasks can be improved via an upstream learning stage using a set of seen tasks. We also observe that the selection of upstream learning tasks can significantly influence few-shot performance on unseen tasks, asking further analysis on task similarity and transferability.
We propose pre-finetuning, an additional large-scale learning stage between language model pre-training and fine-tuning. Pre-finetuning is massively multi-task learning (around 50 datasets, over 4.8 million total labeled examples), and is designed to encourage learning of representations that generalize better to many different tasks. We show that pre-finetuning consistently improves performance for pretrained discriminators (e.g. RoBERTa) and generation models (e.g. BART) on a wide range of tasks (sentence prediction, commonsense reasoning, MRC, etc.), while also significantly improving sample efficiency during fine-tuning. We also show that large-scale multi-tasking is crucial; pre-finetuning can hurt performance when few tasks are used up until a critical point (usually above 15) after which performance improves linearly in the number of tasks.
A reliable clustering algorithm for task-oriented dialogues can help developer analysis and define dialogue tasks efficiently. It is challenging to directly apply prior normal text clustering algorithms for task-oriented dialogues, due to the inheren t differences between them, such as coreference, omission and diversity expression. In this paper, we propose a Dialogue Task Clustering Network model for task-oriented clustering. The proposed model combines context-aware utterance representations and cross-dialogue utterance cluster representations for task-oriented dialogues clustering. An iterative end-to-end training strategy is utilized for dialogue clustering and representation learning jointly. Experiments on three public datasets show that our model significantly outperform strong baselines in all metrics.
The paradigm of leveraging large pre-trained language models has made significant progress on benchmarks on task-oriented dialogue (TOD) systems. In this paper, we combine this paradigm with multi-task learning framework for end-to-end TOD modeling b y adopting span prediction as an auxiliary task. In end-to-end setting, our model achieves new state-of-the-art results with combined scores of 108.3 and 107.5 on MultiWOZ 2.0 and MultiWOZ 2.1, respectively. Furthermore, we demonstrate that multi-task learning improves not only the performance of model but its generalization capability through domain adaptation experiments in the few-shot setting. The code is available at github.com/bepoetree/MTTOD.
This paper describes Charles University sub-mission for Terminology translation shared task at WMT21. The objective of this task is to design a system which translates certain terms based on a provided terminology database, while preserving high over all translation quality. We competed in English-French language pair. Our approach is based on providing the desired translations alongside the input sentence and training the model to use these provided terms. We lemmatize the terms both during the training and inference, to allow the model to learn how to produce correct surface forms of the words, when they differ from the forms provided in the terminology database.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا