Do you want to publish a course? Click here

A Thorough Evaluation of Task-Specific Pretraining for Summarization

تقييم شامل لإحاطاء المهام الخاصة بالتلخيص

158   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Task-agnostic pretraining objectives like masked language models or corrupted span prediction are applicable to a wide range of NLP downstream tasks (Raffel et al.,2019), but are outperformed by task-specific pretraining objectives like predicting extracted gap sentences on summarization (Zhang et al.,2020). We compare three summarization specific pretraining objectives with the task agnostic corrupted span prediction pretraining in controlled study. We also extend our study to a low resource and zero shot setup, to understand how many training examples are needed in order to ablate the task-specific pretraining without quality loss. Our results show that task-agnostic pretraining is sufficient for most cases which hopefully reduces the need for costly task-specific pretraining. We also report new state-of-the-art number for two summarization task using a T5 model with 11 billion parameters and an optimal beam search length penalty.



References used
https://aclanthology.org/
rate research

Read More

Pretraining techniques leveraging enormous datasets have driven recent advances in text summarization. While folk explanations suggest that knowledge transfer accounts for pretraining's benefits, little is known about why it works or what makes a pre training task or dataset suitable. In this paper, we challenge the knowledge transfer story, showing that pretraining on documents consisting of character n-grams selected at random, we can nearly match the performance of models pretrained on real corpora. This work holds the promise of eliminating upstream corpora, which may alleviate some concerns over offensive language, bias, and copyright issues. To see whether the small residual benefit of using real data could be accounted for by the structure of the pretraining task, we design several tasks motivated by a qualitative study of summarization corpora. However, these tasks confer no appreciable benefit, leaving open the possibility of a small role for knowledge transfer.
Abstract Direct decoding for task-oriented dialogue is known to suffer from the explaining-away effect, manifested in models that prefer short and generic responses. Here we argue for the use of Bayes' theorem to factorize the dialogue task into two models, the distribution of the context given the response, and the prior for the response itself. This approach, an instantiation of the noisy channel model, both mitigates the explaining-away effect and allows the principled incorporation of large pretrained models for the response prior. We present extensive experiments showing that a noisy channel model decodes better responses compared to direct decoding and that a two-stage pretraining strategy, employing both open-domain and task-oriented dialogue data, improves over randomly initialized models.
Automatic metrics are commonly used as the exclusive tool for declaring the superiority of one machine translation system's quality over another. The community choice of automatic metric guides research directions and industrial developments by decid ing which models are deemed better. Evaluating metrics correlations with sets of human judgements has been limited by the size of these sets. In this paper, we corroborate how reliable metrics are in contrast to human judgements on -- to the best of our knowledge -- the largest collection of judgements reported in the literature. Arguably, pairwise rankings of two systems are the most common evaluation tasks in research or deployment scenarios. Taking human judgement as a gold standard, we investigate which metrics have the highest accuracy in predicting translation quality rankings for such system pairs. Furthermore, we evaluate the performance of various metrics across different language pairs and domains. Lastly, we show that the sole use of BLEU impeded the development of improved models leading to bad deployment decisions. We release the collection of 2.3M sentence-level human judgements for 4380 systems for further analysis and replication of our work.
Abstract The scarcity of comprehensive up-to-date studies on evaluation metrics for text summarization and the lack of consensus regarding evaluation protocols continue to inhibit progress. We address the existing shortcomings of summarization evalua tion methods along five dimensions: 1) we re-evaluate 14 automatic evaluation metrics in a comprehensive and consistent fashion using neural summarization model outputs along with expert and crowd-sourced human annotations; 2) we consistently benchmark 23 recent summarization models using the aforementioned automatic evaluation metrics; 3) we assemble the largest collection of summaries generated by models trained on the CNN/DailyMail news dataset and share it in a unified format; 4) we implement and share a toolkit that provides an extensible and unified API for evaluating summarization models across a broad range of automatic metrics; and 5) we assemble and share the largest and most diverse, in terms of model types, collection of human judgments of model-generated summaries on the CNN/Daily Mail dataset annotated by both expert judges and crowd-source workers. We hope that this work will help promote a more complete evaluation protocol for text summarization as well as advance research in developing evaluation metrics that better correlate with human judgments.
This paper presents an automatic method to evaluate the naturalness of natural language generation in dialogue systems. While this task was previously rendered through expensive and time-consuming human labor, we present this novel task of automatic naturalness evaluation of generated language. By fine-tuning the BERT model, our proposed naturalness evaluation method shows robust results and outperforms the baselines: support vector machines, bi-directional LSTMs, and BLEURT. In addition, the training speed and evaluation performance of naturalness model are improved by transfer learning from quality and informativeness linguistic knowledge.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا