Do you want to publish a course? Click here

In relation extraction, distant supervision is widely used to automatically label a large-scale training dataset by aligning a knowledge base with unstructured text. Most existing studies in this field have assumed there is a great deal of centralize d unstructured text. However, in practice, texts are usually distributed on different platforms and cannot be centralized due to privacy restrictions. Therefore, it is worthwhile to investigate distant supervision in the federated learning paradigm, which decouples the training of the model from the need for direct access to raw texts. However, overcoming label noise of distant supervision becomes more difficult in federated settings, because texts containing the same entity pair scatter around different platforms. In this paper, we propose a federated denoising framework to suppress label noise in federated settings. The key of this framework is a multiple instance learning based denoising method that is able to select reliable sentences via cross-platform collaboration. Various experiments on New York Times dataset and miRNA gene regulation relation dataset demonstrate the effectiveness of the proposed method.
Asking questions about a situation is an inherent step towards understanding it. To this end, we introduce the task of role question generation, which, given a predicate mention and a passage, requires producing a set of questions asking about all po ssible semantic roles of the predicate. We develop a two-stage model for this task, which first produces a context-independent question prototype for each role and then revises it to be contextually appropriate for the passage. Unlike most existing approaches to question generation, our approach does not require conditioning on existing answers in the text. Instead, we condition on the type of information to inquire about, regardless of whether the answer appears explicitly in the text, could be inferred from it, or should be sought elsewhere. Our evaluation demonstrates that we generate diverse and well-formed questions for a large, broad-coverage ontology of predicates and roles.
Knowledge graph entity typing aims to infer entities' missing types in knowledge graphs which is an important but under-explored issue. This paper proposes a novel method for this task by utilizing entities' contextual information. Specifically, we d esign two inference mechanisms: i) N2T: independently use each neighbor of an entity to infer its type; ii) Agg2T: aggregate the neighbors of an entity to infer its type. Those mechanisms will produce multiple inference results, and an exponentially weighted pooling method is used to generate the final inference result. Furthermore, we propose a novel loss function to alleviate the false-negative problem during training. Experiments on two real-world KGs demonstrate the effectiveness of our method. The source code and data of this paper can be obtained from https://github.com/CCIIPLab/CET.
This paper describes a compact and effective model for low-latency passage retrieval in conversational search based on learned dense representations. Prior to our work, the state-of-the-art approach uses a multi-stage pipeline comprising conversation al query reformulation and information retrieval modules. Despite its effectiveness, such a pipeline often includes multiple neural models that require long inference times. In addition, independently optimizing each module ignores dependencies among them. To address these shortcomings, we propose to integrate conversational query reformulation directly into a dense retrieval model. To aid in this goal, we create a dataset with pseudo-relevance labels for conversational search to overcome the lack of training data and to explore different training strategies. We demonstrate that our model effectively rewrites conversational queries as dense representations in conversational search and open-domain question answering datasets. Finally, after observing that our model learns to adjust the L2 norm of query token embeddings, we leverage this property for hybrid retrieval and to support error analysis.
Emotion cause extraction (ECE) aims to extract the causes behind the certain emotion in text. Some works related to the ECE task have been published and attracted lots of attention in recent years. However, these methods neglect two major issues: 1) pay few attentions to the effect of document-level context information on ECE, and 2) lack of sufficient exploration for how to effectively use the annotated emotion clause. For the first issue, we propose a bidirectional hierarchical attention network (BHA) corresponding to the specified candidate cause clause to capture the document-level context in a structured and dynamic manner. For the second issue, we design an emotional filtering module (EF) for each layer of the graph attention network, which calculates a gate score based on the emotion clause to filter the irrelevant information. Combining the BHA and EF, the EF-BHA can dynamically aggregate the contextual information from two directions and filters irrelevant information. The experimental results demonstrate that EF-BHA achieves the competitive performances on two public datasets in different languages (Chinese and English). Moreover, we quantify the effect of context on emotion cause extraction and provide the visualization of the interactions between candidate cause clauses and contexts.
Impressive milestones have been achieved in text matching by adopting a cross-attention mechanism to capture pertinent semantic connections between two sentence representations. However, regular cross-attention focuses on word-level links between the two input sequences, neglecting the importance of contextual information. We propose a context-aware interaction network (COIN) to properly align two sequences and infer their semantic relationship. Specifically, each interaction block includes (1) a context-aware cross-attention mechanism to effectively integrate contextual information when aligning two sequences, and (2) a gate fusion layer to flexibly interpolate aligned representations. We apply multiple stacked interaction blocks to produce alignments at different levels and gradually refine the attention results. Experiments on two question matching datasets and detailed analyses demonstrate the effectiveness of our model.
A computationally expensive and memory intensive neural network lies behind the recent success of language representation learning. Knowledge distillation, a major technique for deploying such a vast language model in resource-scarce environments, tr ansfers the knowledge on individual word representations learned without restrictions. In this paper, inspired by the recent observations that language representations are relatively positioned and have more semantic knowledge as a whole, we present a new knowledge distillation objective for language representation learning that transfers the contextual knowledge via two types of relationships across representations: Word Relation and Layer Transforming Relation. Unlike other recent distillation techniques for the language models, our contextual distillation does not have any restrictions on architectural changes between teacher and student. We validate the effectiveness of our method on challenging benchmarks of language understanding tasks, not only in architectures of various sizes but also in combination with DynaBERT, the recently proposed adaptive size pruning method.
Politicians often have underlying agendas when reacting to events. Arguments in contexts of various events reflect a fairly consistent set of agendas for a given entity. In spite of recent advances in Pretrained Language Models, those text representa tions are not designed to capture such nuanced patterns. In this paper, we propose a Compositional Reader model consisting of encoder and composer modules, that captures and leverages such information to generate more effective representations for entities, issues, and events. These representations are contextualized by tweets, press releases, issues, news articles, and participating entities. Our model processes several documents at once and generates composed representations for multiple entities over several issues or events. Via qualitative and quantitative empirical analysis, we show that these representations are meaningful and effective.
Combining a pretrained language model (PLM) with textual patterns has been shown to help in both zero- and few-shot settings. For zero-shot performance, it makes sense to design patterns that closely resemble the text seen during self-supervised pret raining because the model has never seen anything else. Supervised training allows for more flexibility. If we allow for tokens outside the PLM's vocabulary, patterns can be adapted more flexibly to a PLM's idiosyncrasies. Contrasting patterns where a token'' can be any continuous vector from those where a discrete choice between vocabulary elements has to be made, we call our method CONtinous pAtterNs (CONAN). We evaluate CONAN on two established benchmarks for lexical inference in context (LIiC) a.k.a. predicate entailment, a challenging natural language understanding task with relatively small training data. In a direct comparison with discrete patterns, CONAN consistently leads to improved performance, setting a new state of the art. Our experiments give valuable insights on the kind of pattern that enhances a PLM's performance on LIiC and raise important questions regarding our understanding of PLMs using text patterns.
An open-domain knowledge graph (KG) has entities as nodes and natural language relations as edges, and is constructed by extracting (subject, relation, object) triples from text. The task of open-domain link prediction is to infer missing relations i n the KG. Previous work has used standard link prediction for the task. Since triples are extracted from text, we can ground them in the larger textual context in which they were originally found. However, standard link prediction methods only rely on the KG structure and ignore the textual context that each triple was extracted from. In this paper, we introduce the new task of open-domain contextual link prediction which has access to both the textual context and the KG structure to perform link prediction. We build a dataset for the task and propose a model for it. Our experiments show that context is crucial in predicting missing relations. We also demonstrate the utility of contextual link prediction in discovering context-independent entailments between relations, in the form of entailment graphs (EG), in which the nodes are the relations. The reverse holds too: context-independent EGs assist in predicting relations in context.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا