Do you want to publish a course? Click here

Many NLG tasks such as summarization, dialogue response, or open domain question answering, focus primarily on a source text in order to generate a target response. This standard approach falls short, however, when a user's intent or context of work is not easily recoverable based solely on that source text-- a scenario that we argue is more of the rule than the exception. In this work, we argue that NLG systems in general should place a much higher level of emphasis on making use of additional context, and suggest that relevance (as used in Information Retrieval) be thought of as a crucial tool for designing user-oriented text-generating tasks. We further discuss possible harms and hazards around such personalization, and argue that value-sensitive design represents a crucial path forward through these challenges.
Scientific literature analysis needs fine-grained named entity recognition (NER) to provide a wide range of information for scientific discovery. For example, chemistry research needs to study dozens to hundreds of distinct, fine-grained entity types , making consistent and accurate annotation difficult even for crowds of domain experts. On the other hand, domain-specific ontologies and knowledge bases (KBs) can be easily accessed, constructed, or integrated, which makes distant supervision realistic for fine-grained chemistry NER. In distant supervision, training labels are generated by matching mentions in a document with the concepts in the knowledge bases (KBs). However, this kind of KB-matching suffers from two major challenges: incomplete annotation and noisy annotation. We propose ChemNER, an ontology-guided, distantly-supervised method for fine-grained chemistry NER to tackle these challenges. It leverages the chemistry type ontology structure to generate distant labels with novel methods of flexible KB-matching and ontology-guided multi-type disambiguation. It significantly improves the distant label generation for the subsequent sequence labeling model training. We also provide an expert-labeled, chemistry NER dataset with 62 fine-grained chemistry types (e.g., chemical compounds and chemical reactions). Experimental results show that ChemNER is highly effective, outperforming substantially the state-of-the-art NER methods (with .25 absolute F1 score improvement).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا