Do you want to publish a course? Click here

ChemNER: Fine-Grained Chemistry Named Entity Recognition with Ontology-Guided Distant Supervision

كيمياء: كيمياء الحبيبات الجميلة المسماة الاعتراف كيان مع الإشراف البعيد بصورة جيدة

279   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Scientific literature analysis needs fine-grained named entity recognition (NER) to provide a wide range of information for scientific discovery. For example, chemistry research needs to study dozens to hundreds of distinct, fine-grained entity types, making consistent and accurate annotation difficult even for crowds of domain experts. On the other hand, domain-specific ontologies and knowledge bases (KBs) can be easily accessed, constructed, or integrated, which makes distant supervision realistic for fine-grained chemistry NER. In distant supervision, training labels are generated by matching mentions in a document with the concepts in the knowledge bases (KBs). However, this kind of KB-matching suffers from two major challenges: incomplete annotation and noisy annotation. We propose ChemNER, an ontology-guided, distantly-supervised method for fine-grained chemistry NER to tackle these challenges. It leverages the chemistry type ontology structure to generate distant labels with novel methods of flexible KB-matching and ontology-guided multi-type disambiguation. It significantly improves the distant label generation for the subsequent sequence labeling model training. We also provide an expert-labeled, chemistry NER dataset with 62 fine-grained chemistry types (e.g., chemical compounds and chemical reactions). Experimental results show that ChemNER is highly effective, outperforming substantially the state-of-the-art NER methods (with .25 absolute F1 score improvement).



References used
https://aclanthology.org/
rate research

Read More

For over thirty years, researchers have developed and analyzed methods for latent tree induction as an approach for unsupervised syntactic parsing. Nonetheless, modern systems still do not perform well enough compared to their supervised counterparts to have any practical use as structural annotation of text. In this work, we present a technique that uses distant supervision in the form of span constraints (i.e. phrase bracketing) to improve performance in unsupervised constituency parsing. Using a relatively small number of span constraints we can substantially improve the output from DIORA, an already competitive unsupervised parsing system. Compared with full parse tree annotation, span constraints can be acquired with minimal effort, such as with a lexicon derived from Wikipedia, to find exact text matches. Our experiments show span constraints based on entities improves constituency parsing on English WSJ Penn Treebank by more than 5 F1. Furthermore, our method extends to any domain where span constraints are easily attainable, and as a case study we demonstrate its effectiveness by parsing biomedical text from the CRAFT dataset.
We present ReasonBert, a pre-training method that augments language models with the ability to reason over long-range relations and multiple, possibly hybrid contexts. Unlike existing pre-training methods that only harvest learning signals from local contexts of naturally occurring texts, we propose a generalized notion of distant supervision to automatically connect multiple pieces of text and tables to create pre-training examples that require long-range reasoning. Different types of reasoning are simulated, including intersecting multiple pieces of evidence, bridging from one piece of evidence to another, and detecting unanswerable cases. We conduct a comprehensive evaluation on a variety of extractive question answering datasets ranging from single-hop to multi-hop and from text-only to table-only to hybrid that require various reasoning capabilities and show that ReasonBert achieves remarkable improvement over an array of strong baselines. Few-shot experiments further demonstrate that our pre-training method substantially improves sample efficiency.
Although pre-trained big models (e.g., BERT, ERNIE, XLNet, GPT3 etc.) have delivered top performance in Seq2seq modeling, their deployments in real-world applications are often hindered by the excessive computations and memory demand involved. For ma ny applications, including named entity recognition (NER), matching the state-of-the-art result under budget has attracted considerable attention. Drawing power from the recent advance in knowledge distillation (KD), this work presents a novel distillation scheme to efficiently transfer the knowledge learned from big models to their more affordable counterpart. Our solution highlights the construction of surrogate labels through the k-best Viterbi algorithm to distill knowledge from the teacher model. To maximally assimilate knowledge into the student model, we propose a multi-grained distillation scheme, which integrates cross entropy involved in conditional random field (CRF) and fuzzy learning.To validate the effectiveness of our proposal, we conducted a comprehensive evaluation on five NER benchmarks, reporting cross-the-board performance gains relative to competing prior-arts. We further discuss ablation results to dissect our gains.
Distantly supervised named entity recognition (DS-NER) efficiently reduces labor costs but meanwhile intrinsically suffers from the label noise due to the strong assumption of distant supervision. Typically, the wrongly labeled instances comprise num bers of incomplete and inaccurate annotations, while most prior denoising works are only concerned with one kind of noise and fail to fully explore useful information in the training set. To address this issue, we propose a robust learning paradigm named Self-Collaborative Denoising Learning (SCDL), which jointly trains two teacher-student networks in a mutually-beneficial manner to iteratively perform noisy label refinery. Each network is designed to exploit reliable labels via self denoising, and two networks communicate with each other to explore unreliable annotations by collaborative denoising. Extensive experimental results on five real-world datasets demonstrate that SCDL is superior to state-of-the-art DS-NER denoising methods.
We offer a fine-grained information state annotation scheme that follows directly from the Incremental Unit abstract model of dialogue processing when used within a multimodal, co-located, interactive setting. We explain the Incremental Unit model and give an example application using the Localized Narratives dataset, then offer avenues for future research.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا