Do you want to publish a course? Click here

169 - Nan Yang , Qin Fei , Qing Gao 2015
We derive the general formulae for the the scalar and tensor spectral tilts to the second order for the inflationary models with non-minimally derivative coupling without taking the high friction limit. The non-minimally kinetic coupling to Einstein tensor brings the energy scale in the inflationary models down to be sub-Planckian. In the high friction limit, the Lyth bound is modified with an extra suppression factor, so that the field excursion of the inflaton is sub-Planckian. The inflationary models with non-minimally derivative coupling are more consistent with observations in the high friction limit. In particular, with the help of the non-minimally derivative coupling, the quartic power law potential is consistent with the observational constraint at 95% CL.
With the usual definitions for the entropy and the temperature associated with the apparent horizon, we show that the unified first law on the apparent horizon is equivalent to the Friedmann equation for the scalar--tensor theory with non-minimally derivative coupling. The second law of thermodynamics on the apparent horizon is also satisfied. The results support a deep and fundamental connection between gravitation, thermodynamics, and quantum theory.
67 - Yungui Gong 2008
The growth rate of matter perturbation and the expansion rate of the Universe can be used to distinguish modified gravity and dark energy models in explaining the cosmic acceleration. The growth rate is parametrized by the growth index $gamma$. We discuss the dependence of $gamma$ on the matter energy density $Omega$ and its current value $Omega_0$ for a more accurate approximation of the growth factor. The observational data, including the data of the growth rate, are used to fit different models. The data strongly disfavor the Dvali-Gabadadze-Porrati model. For the dark energy model with a constant equation of state, we find that $Omega_0=0.27pm 0.02$ and $w=-0.97pm 0.09$. For the $Lambda$CDM model, we find that $gamma=0.64^{+0.17}_{-0.15}$. For the Dvali-Gabadadze-Porrati model, we find that $gamma=0.55^{+0.14}_{-0.13}$.
120 - Yungui Gong , Jie Liu 2008
The extended holographic dark energy model with the Hubble horizon as the infrared cutoff avoids the problem of the circular reasoning of the holographic dark energy model. We show that the infrared cutoff of the extended holographic dark energy model cannot be the Hubble horizon provided that the Brans-Dicke parameter $omega$ satisfies the experimental constraint $omega> 10^4$, and this is proved as a no-go theorem. The no-go theorem also applies to the case in which the dark matter interacts with the dark energy.
We use the Monte-Carlo Markov Chain method to explore the dark energy property and the cosmic curvature by fitting two popular dark energy parameterizations to the observational data. The new 182 gold supernova Ia data and the ESSENCE data both give good constraint on the DE parameters and the cosmic curvature for the dark energy model $w_0+w_a z/(1+z)$. The cosmic curvature is found to be $|Omega_k|la 0.03$. For the dark energy model $w_0+w_a z/(1+z)^2$, the ESSENCE data gives better constraint on the cosmic curvature and we get $|Omega_k|leq 0.02$.
With the help of a masslike function which has dimension of energy and equals to the Misner-Sharp mass at the apparent horizon, we show that the first law of thermodynamics of the apparent horizon $dE=T_AdS_A$ can be derived from the Friedmann equation in various theories of gravity, including the Einstein, Lovelock, nonlinear, and scalar-tensor theories. This result strongly suggests that the relationship between the first law of thermodynamics of the apparent horizon and the Friedmann equation is not just a simple coincidence, but rather a more profound physical connection.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا