Do you want to publish a course? Click here

Thermodynamics of scalar-tensor theory with non-minimally derivative coupling

132   0   0.0 ( 0 )
 Added by Yungui Gong
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

With the usual definitions for the entropy and the temperature associated with the apparent horizon, we show that the unified first law on the apparent horizon is equivalent to the Friedmann equation for the scalar--tensor theory with non-minimally derivative coupling. The second law of thermodynamics on the apparent horizon is also satisfied. The results support a deep and fundamental connection between gravitation, thermodynamics, and quantum theory.



rate research

Read More

205 - Nan Yang , Qin Fei , Qing Gao 2015
We derive the general formulae for the the scalar and tensor spectral tilts to the second order for the inflationary models with non-minimally derivative coupling without taking the high friction limit. The non-minimally kinetic coupling to Einstein tensor brings the energy scale in the inflationary models down to be sub-Planckian. In the high friction limit, the Lyth bound is modified with an extra suppression factor, so that the field excursion of the inflaton is sub-Planckian. The inflationary models with non-minimally derivative coupling are more consistent with observations in the high friction limit. In particular, with the help of the non-minimally derivative coupling, the quartic power law potential is consistent with the observational constraint at 95% CL.
73 - Valerio Faraoni 2021
Previously, the Einstein equation has been described as an equation of state, general relativity as the equilibrium state of gravity, and $f({cal R})$ gravity as a non-equilibrium one. We apply Eckarts first order thermodynamics to the effective dissipative fluid describing scalar-tensor gravity. Surprisingly, we obtain simple expressions for the effective heat flux, temperature of gravity, shear and bulk viscosity, and entropy density, plus a generalized Fourier law in a consistent Eckart thermodynamical picture. Well-defined notions of temperature and approach to equilibrium, missing in the current thermodynamics of spacetime scenarios, naturally emerge.
161 - Xian Gao , Yu-Min Hu 2020
We investigate the correspondence between generally covariant higher derivative scalar-tensor theory and spatially covariant gravity theory. The building blocks are the scalar field and spacetime curvature tensor together with their generally covariant derivatives for the former, and the spatially covariant geometric quantities together with their spatially covariant derivatives for the later. In the case of a single scalar degree of freedom, they are transformed to each other by gauge fixing and recovering procedures, of which we give the explicit expressions. We make a systematic classification of all the scalar monomials in the spatially covariant gravity according to the total number of derivatives up to $d=4$, and their correspondence to the scalar-tensor monomials. We discusse the possibility of using spatially covariant monomials to generate ghostfree higher derivative scalar-tensor theories. We also derive the covariant 3+1 decomposition without fixing any specific coordinate, which will be useful when performing a covariant Hamiltonian analysis.
We derive the odd parity perturbation equation in scalar-tensor theories with a non minimal kinetic coupling sector of the general Horndeski theory, where the kinetic term is coupled to the metric and the Einstein tensor. We derive the potential of the perturbation, by identifying a master function and switching to tortoise coordinates. We then prove the mode stability under linear odd- parity perturbations of hairy black holes in this sector of Horndeski theory, when a cosmological constant term in the action is included. Finally, we comment on the existence of slowly rotating black hole solutions in this setup and discuss their implications on the physics of compact objects configurations, such as neutron stars.
For a theory in which a scalar field $phi$ has a nonminimal derivative coupling to the Einstein tensor $G_{mu u}$ of the form $phi,G_{mu u} abla^{mu} abla^{ u} phi$, it is known that there exists a branch of static and spherically-symmetric relativistic stars endowed with a scalar hair in their interiors. We study the stability of such hairy solutions with a radial field dependence $phi(r)$ against odd- and even-parity perturbations. We show that, for the star compactness ${cal C}$ smaller than $1/3$, they are prone to Laplacian instabilities of the even-parity perturbation associated with the scalar-field propagation along an angular direction. Even for ${cal C}>1/3$, the hairy star solutions are subject to ghost instabilities. We also find that even the other branch with a vanishing background field derivative is unstable for a positive perfect-fluid pressure, due to nonstandard propagation of the field perturbation $delta phi$ inside the star. Thus, there are no stable star configurations in derivative coupling theory without a standard kinetic term, including both relativistic and nonrelativistic compact objects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا