Do you want to publish a course? Click here

Growth factor parametrization and modified gravity

68   0   0.0 ( 0 )
 Added by Yungui Gong
 Publication date 2008
  fields Physics
and research's language is English
 Authors Yungui Gong




Ask ChatGPT about the research

The growth rate of matter perturbation and the expansion rate of the Universe can be used to distinguish modified gravity and dark energy models in explaining the cosmic acceleration. The growth rate is parametrized by the growth index $gamma$. We discuss the dependence of $gamma$ on the matter energy density $Omega$ and its current value $Omega_0$ for a more accurate approximation of the growth factor. The observational data, including the data of the growth rate, are used to fit different models. The data strongly disfavor the Dvali-Gabadadze-Porrati model. For the dark energy model with a constant equation of state, we find that $Omega_0=0.27pm 0.02$ and $w=-0.97pm 0.09$. For the $Lambda$CDM model, we find that $gamma=0.64^{+0.17}_{-0.15}$. For the Dvali-Gabadadze-Porrati model, we find that $gamma=0.55^{+0.14}_{-0.13}$.

rate research

Read More

205 - Hao Wei , Shuang Nan Zhang 2008
The current accelerated expansion of our universe could be due to an unknown energy component (dark energy) or a modification to general relativity (modified gravity). In the literature, it has been proposed that combining the probes of the cosmic expansion history and growth history can distinguish between dark energy and modified gravity. In this work, without invoking non-trivial dark energy clustering, we show that the possible interaction between dark energy and dark matter could make the interacting dark energy model and the modified gravity model indistinguishable. An explicit example is also given. Therefore, it is required to seek some complementary probes beyond the ones of cosmic expansion history and growth history.
We use the cosmic shear data from the Canada-France-Hawaii Telescope Lensing Survey to place constraints on $f(R)$ and {it Generalized Dilaton} models of modified gravity. This is highly complimentary to other probes since the constraints mainly come from the non-linear scales: maximal deviations with respects to the General-Relativity + $Lambda$CDM scenario occurs at $ksim1 h mbox{Mpc}^{-1}$. At these scales, it becomes necessary to account for known degeneracies with baryon feedback and massive neutrinos, hence we place constraints jointly on these three physical effects. To achieve this, we formulate these modified gravity theories within a common tomographic parameterization, we compute their impact on the clustering properties relative to a GR universe, and propagate the observed modifications into the weak lensing $xi_{pm}$ quantity. Confronted against the cosmic shear data, we reject the $f(R)$ ${ |f_{R_0}|=10^{-4}, n=1}$ model with more than 99.9% confidence interval (CI) when assuming a $Lambda$CDM dark matter only model. In the presence of baryonic feedback processes and massive neutrinos with total mass up to 0.2eV, the model is disfavoured with at least 94% CI in all different combinations studied. Constraints on the ${ |f_{R_0}|=10^{-4}, n=2}$ model are weaker, but nevertheless disfavoured with at least 89% CI. We identify several specific combinations of neutrino mass, baryon feedback and $f(R)$ or Dilaton gravity models that are excluded by the current cosmic shear data. Notably, universes with three massless neutrinos and no baryon feedback are strongly disfavoured in all modified gravity scenarios studied. These results indicate that competitive constraints may be achieved with future cosmic shear data.
We derive new positivity bounds for scattering amplitudes in theories with a massless graviton in the spectrum in four spacetime dimensions, of relevance for the weak gravity conjecture and modified gravity theories. The bounds imply that extremal black holes are self-repulsive, $M/|Q|<1$ in suitable units, and that they are unstable to decay to smaller extremal black holes, providing an S-matrix proof of the weak gravity conjecture. We also present other applications of our bounds to the effective field theory of axions, $P(X)$ theories, weakly broken galileons, and curved spacetimes.
We propose a new cosmological framework in which the strength of the gravitational force acted on dark matter at late time can be weaker than that on the standard matter fields without introducing extra gravitational degrees of freedom. The framework integrates dark matter into a type-II minimally modified gravity that was recently proposed as a dark energy mimicker. The idea that makes such a framework possible consists of coupling a dark matter Lagrangian and a cosmological constant to the metric in a canonically transformed frame of general relativity (GR). On imposing a gauge fixing constraint, which explicitly breaks the temporal diffeomorphism invariance, we keep the number of gravitational degrees of freedom to be two, as in GR. We then make the inverse canonical transformation to bring the theory back to the original frame, where one can add the standard matter fields. This framework contains two free functions of time which specify the generating functional of the above mentioned canonical transformation and which are then used in order to realize desired time evolutions of both the Hubble expansion rate $H(z)$ and the effective gravitational constant for dark matter $G_{rm eff}(z)$. The aim of this paper is therefore to provide a new framework to address the two puzzles present in todays cosmology, i.e. the $H_0$ tension and the $S_8$ tension, simultaneously. When the dark matter is cold in this framework, we dub the corresponding cosmological model the V Canonical Cold Dark Matter (VCCDM), as the cosmological constant $Lambda$ in the standard $Lambda$CDM is replaced by a function $V(phi)$ of an auxiliary field $phi$ and the CDM is minimally coupled to the metric in a canonically transformed frame.
We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely $f(R)$ gravity and nDGP, and find good agreement in the modified gravity boost-factors relative to $Lambda$CDM even when using a fairly small number of COLA time steps.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا