Do you want to publish a course? Click here

The high-fluence GRB131108A at redshift z=2.4, was detected by the Mini-Calorimeter (MCAL, 0.35-100 MeV) and the Gamma- Ray Imaging Detector (GRID, 30 MeV - 30 GeV) onboard the AGILE satellite. The burst emission consisted of a very bright initial peak,lasting 0.1 s, followed by a fainter emission detected for ~25 s with the MCAL and ~80 s with the GRID. The AGILE spectra, when compared with those reported at lower energies, indicate the presence of a prominent high-energy component with peak energy in the 10-20 MeV region. Contrary to other GRBs, this high-energy component is present also during the initial peak, with power law photon index of about -1.6 below 10 MeV and -2.35+-0.2 above 30 MeV.
124 - N. La Palombara 2014
X-ray observations of sdO stars are a useful tool to investigate their properties, but so far only two sdO stars were detected at X-rays. We observed a complete flux-limited sample of 19 sdO stars with the Chandra HRC-I camera to measure the count rate of the detected sources or to set a tight upper limit on it for the undetected sources. We obtained a robust detection of BD+37 1977 and Feige 34 and a marginal detection of BD+28 4211. The estimated luminosity of BD+37 1977 is above 10^31 erg/s, which is high enough to suggest the possible presence of an accreting compact companion. This possibility is unlikely for all the other targets (both detected and undetected), since in their case L_X < 10^30 erg/s. On the other hand, for all 19 targets the estimated value of L_X (or its upper limit) implies an X-ray/bolometric flux ratio that agrees with log(L_X/L_bol) = -6.7 +/- 0.5, which is the range of values typical of main-sequence and giant O stars. Therefore, for Feige 34 and BD+28 4211 the observed X-ray flux is most probably due to intrinsic emission. The same is possibile for the 16 undetected stars.
213 - N. La Palombara 2013
We report on the main results obtained thanks to an observation campaign with XMM-Newton of four persistent, low-luminosity (Lx ~ 10^34 erg/s) and long-period (P > 200 s) Be accreting pulsars. We found that all sources considered here are characterized by a spectral excess that can be described with a blackbody component of high temperature (kTbb > 1 keV) and small area (Rbb < 0.5 km). We show that: 1) this feature is a common property of several low-luminosity X-ray binaries; 2) for most sources the blackbody parameters (radius and temperature) are within a narrow range of values; 3) it can be interpreted as emission from the NS polar caps.
We report on the results we obtained with XMM-Newton observations of HD49798 and BD+37 442, the only two sdO stars for which X-ray emission has been observed so far. HD is a single-lined spectroscopic binary with orbital period of 1.5 days. We could establish that its companion is a massive white dwarf with M = 1.28 Msun, which makes it a candidate type Ia supernova progenitor; we also detected a significant X-ray emission during the white-dwarf eclipse, which could be X-ray emission of the sdO star itself. In the case of BD+37 442, a luminous He-rich sdO that up to now was believed to be a single star, we discovered soft X-ray emission with a periodicity of 19.2 s. This indicates that also this hot subdwarf has a compact binary companion, either a white dwarf or a neutron star, most likely powered by accretion from the wind of the sdO star.
The X-ray source RX J0648.0-4418 is the only confirmed binary system in which a compact object, most likely a massive white dwarf, accretes from a hot subdwarf companion, the bright sdO star HD 49798. The X-ray emission from this system is characterized by two periodic modulations caused by an eclipse, at the orbital period of 1.55 d, and by the rotation of the compact object with a spin period of 13.2 s. In 2011 we obtained six short XMM-Newton observations centered at orbital phase 0.75, in order to study the system during the eclipse, and spaced at increasingly long time intervals in order to obtain an accurate measure of the spin-period evolution through phase-connected timing. The duration of the eclipse ingress and egress, 500 s, indicates the presence of an X-ray emitting region with dimensions of the order of a few 10^4 km, surrounding the pulsar and probably due to scattering in the companions wind. We derived an upper limit on the spin-period derivative |Pdot|<6x10^-15 s/s, more than two orders of magnitude smaller than the previously available value. Significant X-ray emission is detected also during the 1.2 hours-long eclipse, with a luminosity of about 3x10^30 erg/s. The eclipse spectrum shows prominent emission lines of H- and He-like nitrogen, an overabundant element in HD 49798. These findings support the suggestion that the X-ray emission observed during the eclipse originates in HD 49798 and that the processes responsible for X-ray emission in the stellar winds of massive O stars are also at work in the much weaker winds of hot subdwarfs.
71 - N. La Palombara 2013
We report on the main results obtained thanks to an observation campaign, performed with XMM-Newton, of four persistent, low-luminosity (Lx ~ 10^34 erg/s) and long-period (P > 200 s) Be accreting pulsars. We found that all sources considered here are characterized by a spectral excess that can be described with a blackbody component of high temperature (kT > 1 keV) and small area (R < 0.5 km). We show that: 1) this feature is a common property of several low-luminosity X-ray binaries; 2) for most sources the blackbody parameters (radius and temperature) are within a narrow range of values; 3) it can be interpreted as emission from the NS polar caps.
In October 2007 a hard X-ray burst was detected by the INTEGRAL satellite from a direction consistent with the position of AX J1818.8-1559, an X-ray source at low Galactic latitude discovered with the ASCA satellite in 1996-1999. The short duration (0.8 s) and soft spectrum (power law photon index of 3.0+/-0.2) of the burst in the 20-100 keV range are typical of Soft Gamma-ray Repeaters and Anomalous X-ray Pulsars. We report on the results of an observation of AX J1818.8-1559 obtained with the Suzaku satellite in October 2011. The source spectrum, a power law with photon index 1.5, and flux 2x10^{-12} erg cm^-2 s^-1 (2-10 keV), do not show significant variations with respect to the values derived from archival data of various satellites (ROSAT, XMM-Newton, Chandra, Swift) obtained from 1993 to 2011. We discuss possible interpretations for AX J1818.8-1559 and, based on its association with the INTEGRAL burst, we propose it as a new member of the small class of magnetar candidates.
We report on a detailed spectral analysis of all the available XMM-Newton data of RX J1856.5-3754, the brightest and most extensively observed nearby, thermally emitting neutron star. Very small variations (~1-2%) in the single-blackbody temperature are detected, but are probably due to an instrumental effect, since they correlate with the position of the source on the detector. Restricting the analysis to a homogeneous subset of observations, with the source at the same detector position, we place strong limits on possible spectral or flux variations from March 2005 to present-day. A slightly higher temperature (kT~61.5 eV, compared to the average value kT~61 eV) was instead measured in April 2002. If this difference is not of instrumental origin, it implies a rate of variation of about 0.15 eV/yr between April 2002 and March 2005. The high-statistics spectrum from the selected observations is well fit by the sum of two blackbody models, which extrapolate to an optical flux level in agreement with the observed value.
We report the results of the first X-ray observation of the luminous and helium-rich O-type subdwarf BD+37 442, carried out with the XMM-Newton satellite in August 2011. X-ray emission is detected with a flux of about 3x10^(-14) erg/cm2/s (0.2-1 keV) and a very soft spectrum, well fit by the sum of a blackbody with temperature kT_BB = 45^(+11)_(-9) eV and a power law with a poorly constrained photon index. Significant pulsations with a period of 19.2 s are detected, indicating that the X-ray emission originates in a white dwarf or neutron star companion, most likely powered by accretion from the wind of BD+37 442.
97 - L.Sidoli 2011
We report on a 40 ks long, uninterrupted X-ray observation of the candidate supergiant fast X-ray transient (SFXT) IGRJ16418-4532 performed with XMM-Newton on February 23, 2011. This high mass X-ray binary lies in the direction of the Norma arm, at an estimated distance of 13 kpc. During the observation, the source showed strong variability exceeding two orders of magnitudes, never observed before from this source. Its X-ray flux varied in the range from 0.1 counts/s to about 15 counts/s, with several bright flares of different durations (from a few hundreds to a few thousands seconds) and sometimes with a quasi-periodic behavior. This finding supports the previous suggestion that IGRJ16418-4532 is a member of the SFXTs class. In our new observation we measured a pulse period of 1212+/-6 s, thus confirming that this binary contains a slowly rotating neutron star. During the periods of low luminosity the source spectrum is softer and more absorbed than during the flares. A soft excess is present below 2 keV in the cumulative flares spectrum, possibly due to ionized wind material at a distance similar to the neutron star accretion radius. The kind of X-ray variability displayed by IGRJ16418-4532, its dynamic range and time scale,together with the sporadic presence of quasi-periodic flaring, all are suggestive of a transitional accretion regime between pure wind accretion and full Roche lobe overflow. We discuss here for the first time this hypothesis to explain the behavior of IGRJ16418-4532 and, possibly, of other SFXTs with short orbital periods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا