Do you want to publish a course? Click here

The hot-blackbody spectral excess in low-luminosity High-Mass X-Ray Binaries

293   0   0.0 ( 0 )
 Added by Nicola La Palombara
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the main results obtained thanks to an observation campaign with XMM-Newton of four persistent, low-luminosity (Lx ~ 10^34 erg/s) and long-period (P > 200 s) Be accreting pulsars. We found that all sources considered here are characterized by a spectral excess that can be described with a blackbody component of high temperature (kTbb > 1 keV) and small area (Rbb < 0.5 km). We show that: 1) this feature is a common property of several low-luminosity X-ray binaries; 2) for most sources the blackbody parameters (radius and temperature) are within a narrow range of values; 3) it can be interpreted as emission from the NS polar caps.



rate research

Read More

80 - E. Sonbas , K. S. Dhuga , 2018
A recent study of a small sample of X-ray binaries (XRBs) suggests a significant softening of spectra of neutron star (NS) binaries as compared to black hole (BH) binaries in the luminosity range 10$^{34}$ - 10$^{37}$ erg/s. This softening is quantified as an anticorrelation between the spectral index and the 0.5 - 10 keV X-ray luminosity. We extend the study to significantly lower luminosities (i.e., $sim$ a few $times$ $10^{30}$ erg/s) for a larger sample of XRBs. We find evidence for a significant anticorrelation between the spectral index and the luminosity for a group of NS binaries in the luminosity range 10$^{32}$ to 10$^{33}$ erg/s. Our analysis suggests a steep slope for the correlation i.e., -2.12 $pm$ 0.63. In contrast, BH binaries do not exhibit the same behavior. We examine the possible dichotomy between NS and BH binaries in terms of a Comptonization model that assumes a feedback mechanism between an optically thin hot corona and an optically thick cool source of soft photons. We gauge the NS-BH dichotomy by comparing the extracted corona temperatures, Compton-y parameters and the Comptonization amplification factors: The mean temperature of the NS group is found to be significantly lower than the equivalent temperature for the BH group. The extracted Compton-y parameters and the amplification factors follow the theoretically predicted relation with the spectral index.
We present new Chandra observations of the outer halo of the giant elliptical galaxy NGC 4472 (M49) in the Virgo Cluster. The data extend to 130 kpc (28), and have a combined exposure time of 150 ks. After identifying optical counterparts using the Next Generation Virgo Cluster Survey to remove background active galactic nuclei and globular cluster (GC) sources, and correcting for completeness, we find that the number of field low-mass X-ray binaries (LMXBs) per unit stellar V-band light increases significantly with galactocentric radius. Because the flux limit of the complete sample corresponds to the Eddington limit for neutron stars in NGC 4472, many of the ~90 field LMXBs in this sample could host black holes. The excess of field LMXBs at large galactocentric radii may be partially caused by natal kicks on black holes and neutron stars in binary systems in the inner part of the galaxy. Furthermore, since the metallicity in the halo of NGC 4472 strongly decreases towards larger galactocentric radii, the number of field LMXBs per unit stellar mass is anti-correlated with metallicity, opposite to what is observed in GCs. Another way to explain the spatial distribution of field LMXBs is therefore a reversed metallicity effect, although we have not identified a mechanism to explain this in terms of stellar and binary evolution.
We have carried out radiation-hydrodynamic simulations of thermally-driven accretion disc winds in low-mass X-ray binaries. Our main goal is to study the luminosity dependence of these outflows and compare with observations. The simulations span the range $rm{0.04 leq L_{acc}/L_{Edd} leq 1.0}$ and therefore cover most of the parameter space in which disc winds have been observed. Using a detailed Monte Carlo treatment of ionization and radiative transfer, we confirm two key results found in earlier simulations that were carried out in the optically thin limit: (i) the wind velocity -- and hence the maximum blueshift seen in wind-formed absorption lines -- increases with luminosity; (ii) the large-scale wind geometry is quasi-spherical, but observable absorption features are preferentially produced along high-column equatorial sightlines. In addition, we find that (iii) the wind efficiency always remains approximately constant at $rm{dot{M}_{wind}/dot{M}_{acc} simeq 2}$, a behaviour that is consistent with observations. We also present synthetic Fe XXV and Fe XXVI absorption line profiles for our simulated disc winds in order to illustrate the observational implications of our results.
Binary systems with a neutron-star primary accreting from a companion star display variability in the X-ray band on time scales ranging from years to milliseconds. With frequencies of up to ~1300 Hz, the kilohertz quasi-periodic oscillations (kHz QPOs) represent the fastest variability observed from any astronomical object. The sub-millisecond time scale of this variability implies that the kHz QPOs are produced in the accretion flow very close to the surface of the neutron star, providing a unique view of the dynamics of matter under the influence of some of the strongest gravitational fields in the Universe. This offers the possibility to probe some of the most extreme predictions of General Relativity, such as dragging of inertial frames and periastron precession at rates that are sixteen orders of magnitude faster than those observed in the solar system and, ultimately, the existence of a minimum distance at which a stable orbit around a compact object is possible. Here we review the last twenty years of research on kHz QPOs, and we discuss the prospects for future developments in this field.
Strongly magnetized, accreting neutron stars show periodic and aperiodic variability over a wide range of time scales. By obtaining spectral and timing information on these different time scales, we can have a closer look into the physics of accretion close to the neutron star and the properties of the accreted material. One of the most prominent time scales is the strong pulsation, i.e., the rotation period of the neutron star itself. Over one rotation, our view of the accretion column and the X-ray producing region changes significantly. This allows us to sample different physical conditions within the column but at the same time requires that we have viewing-angle-resolved models to properly describe them. In wind-fed high-mass X-ray binaries, the main source of aperiodic variability is the clumpy stellar wind, which leads to changes in the accretion rate (i.e., luminosity) as well as absorption column. This variability allows us to study the behavior of the accretion column as a function of luminosity, as well as to investigate the structure and physical properties of the wind, which we can compare to winds in isolated stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا