Do you want to publish a course? Click here

X-ray emission from the luminous O-type subdwarf HD 49798 and its compact companion

120   0   0.0 ( 0 )
 Added by Sandro Mereghetti
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The X-ray source RX J0648.0-4418 is the only confirmed binary system in which a compact object, most likely a massive white dwarf, accretes from a hot subdwarf companion, the bright sdO star HD 49798. The X-ray emission from this system is characterized by two periodic modulations caused by an eclipse, at the orbital period of 1.55 d, and by the rotation of the compact object with a spin period of 13.2 s. In 2011 we obtained six short XMM-Newton observations centered at orbital phase 0.75, in order to study the system during the eclipse, and spaced at increasingly long time intervals in order to obtain an accurate measure of the spin-period evolution through phase-connected timing. The duration of the eclipse ingress and egress, 500 s, indicates the presence of an X-ray emitting region with dimensions of the order of a few 10^4 km, surrounding the pulsar and probably due to scattering in the companions wind. We derived an upper limit on the spin-period derivative |Pdot|<6x10^-15 s/s, more than two orders of magnitude smaller than the previously available value. Significant X-ray emission is detected also during the 1.2 hours-long eclipse, with a luminosity of about 3x10^30 erg/s. The eclipse spectrum shows prominent emission lines of H- and He-like nitrogen, an overabundant element in HD 49798. These findings support the suggestion that the X-ray emission observed during the eclipse originates in HD 49798 and that the processes responsible for X-ray emission in the stellar winds of massive O stars are also at work in the much weaker winds of hot subdwarfs.



rate research

Read More

The hot subdwarf HD 49798 has an X-ray emitting compact companion with a spin-period of 13.2 s and a dynamically measured mass of 1.28+/-0.05 M_sun, consistent with either a neutron star or a white dwarf. Using all the available XMM-Newton and Swift observations of this source, we could perform a phase-connected timing analysis extending back to the ROSAT data obtained in 1992. We found that the pulsar is spinning up at a rate of (2.15+/-0.05)x10^{-15} s/s. This result is best interpreted in terms of a neutron star accreting from the wind of its subdwarf companion, although the remarkably steady period derivative over more than 20 years is unusual in wind-accreting neutron stars. The possibility that the compact object is a massive white dwarf accreting through a disk cannot be excluded, but it requires a larger distance and/or properties of the stellar wind of HD 49798 different from those derived from the modelling of its optical/UV spectra.
125 - Sandro Mereghetti 2011
Stellar evolutionary models predict that most of the early type subdwarf stars in close binary systems have white dwarf companions. More massive companions, such as neutron stars or black holes, are also expected in some cases. The presence of compact stars in these systems can be revealed by the detection of X-rays powered by accretion of the subdwarfs stellar wind or by surface thermal emission. Using the Swift satellite, we carried out a systematic search for X-ray emission from a sample of twelve subdwarf B stars which, based on optical studies, have been suggested to have degenerate companions. None of our targets was detected, but the derived upper limits provide one of the few observational constraints on the stellar winds of early type subdwarfs. If the presence of neutron star companions is confirmed, our results constrain the mass loss rates of some of these subdwarf B stars to values <10^{-13}-10^{-12} Msun/yr.
We report on the results of an XMM-Newton observation of the Supergiant Fast X-ray Transient (SFXT) IGR J08408-4503 performed in June 2020. The source is composed by a compact object (likely a neutron star) orbiting around an O8.5Ib-II(f)p star, LM Vel. The X-ray light curve shows a very low level of emission, punctuated by a single, faint flare. Analysis of spectra measured during the flare and during quiescence is performed. The quiescent state shows a continuum spectrum well deconvolved to three spectral models: two components are from a collisionally-ionized plasma (with temperatures kT1=0.24 keV and kT2=0.76 keV), together with a power law model (photon index of 2.55), dominating above 2 keV. The X-ray flux emitted at this lowest level is 3.2$times10^{-13}$ erg/cm2/s (0.5-10 keV, corrected for the interstellar absorption), implying an X-ray luminosity of 1.85$times10^{32}$ erg/s (at 2.2 kpc). The two temperature collisionally-ionized plasma is intrinsic to the stellar wind of the donor star, while the power law can be interpreted as emission due to residual, low level accretion onto the compact object. The X-ray luminosity contributed by the power law component only, in the lowest state, is (4.8$pm{1.4})times10^{31}$ erg/s, the lowest quiescent luminosity detected from the compact object in an SFXT. Thanks to this very faint X-ray state caught by XMM-Newton, X-ray emission from the wind of the donor star LM Vel could be well-established and studied in detail for the first time, as well as a very low level of accretion onto the compact object. The residual accretion rate onto the compact object in IGR J08408-4503 can be interpreted as the Bohm diffusion of (possibly magnetized) plasma entering the neutron star magnetosphere at low Bondi capture rates from the supergiant donor wind at the quasi-spherical radiation-driven settling accretion stage.
We present the first coordinated soft and hard 0.3-80 keV X-ray campaign of the extragalactic supernova SN 2014C in the first $sim$2307 d of its evolution. SN 2014C initially appeared to be an ordinary type Ib explosion but evolved into a strongly-interacting hydrogen-rich type IIn SN over $sim1 rm{yr}$. We observed signatures of interaction with a dense medium across the X-ray spectrum, which revealed the presence of a $sim 1-2 rm{M}_{odot}$ shell of material at $sim6times10^{16} rm{cm}$ from the progenitor. This finding challenges current understanding of hydrogen-poor core-collapse progenitor evolution. Potential scenarios to interpret these observations include (i) the ejection of the hydrogen envelope by the progenitor star in the centuries prior to the explosion; (ii) interaction of the fast Wolf-Rayet (WR) star wind with the slow, dense wind of the Red Super Giant (RSG) phase, with an anomalously short WR phase.
We report the results of the first X-ray observation of the luminous and helium-rich O-type subdwarf BD+37 442, carried out with the XMM-Newton satellite in August 2011. X-ray emission is detected with a flux of about 3x10^(-14) erg/cm2/s (0.2-1 keV) and a very soft spectrum, well fit by the sum of a blackbody with temperature kT_BB = 45^(+11)_(-9) eV and a power law with a poorly constrained photon index. Significant pulsations with a period of 19.2 s are detected, indicating that the X-ray emission originates in a white dwarf or neutron star companion, most likely powered by accretion from the wind of BD+37 442.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا