Do you want to publish a course? Click here

Cells can sense and respond to mechanical signals over relatively long distances across fibrous extracellular matrices. Here, we explore all of the key factors that influence long range force transmission in cell-populated collagen matrices: alignment of collagen fibers, responses to applied force, strain stiffening properties of the aligned fibers, aspect ratios of the cells, and the polarization of cellular contraction. A constitutive law accounting for mechanically-driven collagen fiber reorientation is proposed. We systematically investigate the range of collagen fiber alignment using both finite element simulations and analytical calculations. Our results show that tension-driven collagen fiber alignment plays a crucial role in force transmission. Small critical stretch for fiber alignment, large fiber stiffness and fiber strain hardening behavior enable long-range interaction. Furthermore, the range of collagen fiber alignment for elliptical cells with polarized contraction is much larger than that for spherical cells with diagonal contraction. A phase diagram showing the range of force transmission as a function of cell shape and polarization and matrix properties is presented. Our results are in good agreement with recent experiments, and highlight the factors that influence long-range force transmission, in particular tension-driven alignment of fibers. Our work has important relevance to biological processes including development, cancer metastasis and wound healing, suggesting conditions whereby cells communicate over long distances.
86 - H. B. Xue , Y. Y. Feng , S. Chen 2014
We demonstrate an atom interferometer that uses a laser-cooled continuous beam of $^{87}$Rb atoms having velocities of 10--20 m/s. With spatially separated Raman beams to coherently manipulate the atomic wave packets, Mach--Zehnder interference fringes are observed at an interference distance of 2L = 19 mm. The apparatus operates within a small enclosed area of 0.07 mm$^2$ at a bandwidth of 190 Hz with a deduced sensitivity of $7.8times10^{-5}$ rad/s/$sqrt{{Hz}}$ for rotations. Using a low-velocity continuous atomic source in an atom interferometer enables high sampling rates and bandwidths without sacrificing sensitivity and compactness, which are important for applications in real dynamic environments.
We present new formulae for the matrix elements of one-body and two-body physical operators in compact forms, which are applicable to arbitrary Hartree-Fock-Bogoliubov wave functions, including those for multi-quasiparticle excitations. The test calculations show that our formulae may substantially accelerate the process of symmetry restoration when applied to the heavy nuclear system.
Overlap between Hartree-Fock-Bogoliubov(HFB) vacua is very important in the beyond mean-field calculations. However, in the HFB transformation, the $U,V$ matrices are sometimes singular due to the exact emptiness ($v_i=0$) or full occupation ($u_i=0$) of some single-particle orbits. This singularity may cause some problem in evaluating the overlap between HFB vacua through Pfaffian. We found that this problem can be well avoided by setting those zero occupation numbers to some tiny values (e.g., $u_i,v_i=10^{-8}$). This treatment does not change the HFB vacuum state because $u_i^2,v_i^2=10^{-16}$ are numerically zero relative to 1. Therefore, for arbitrary HFB transformation, we say that the $U,V$ matrices can always be nonsingular. From this standpoint, we present a new convenient Pfaffian formula for the overlap between arbitrary HFB vacua, which is especially suitable for symmetry restoration. Testing calculations have been performed for this new formula. It turns out that our method is reliable and accurate in evaluating the overlap between arbitrary HFB vacua.
87 - Xue Pan , Lizhu Chen , X. S. Chen 2012
Considering different universality classes of the QCD phase transitions, we perform the Monte Carlo simulations of the 3-dimensional $O(1, 2, 4)$ models at vanishing and non-vanishing external field, respectively. Interesting high cumulants of the order parameter and energy from O(1) (Ising) spin model, and the cumulants of the energy from O(2) and O(4) spin models are presented. The critical features of the cumulants are discussed. They are instructive to the high cumulants of the net baryon number in the QCD phase transitions.
301 - H. B. Liu , Q. Liu , S. Chen 2012
THGEMs (THick Gas Electron Multiplier) of varying thickness, hole diameter and hole pitch have been studied. For a thinner-THGEM of thickness 0.2 mm, with hole diameter 0.2 mm, pitch 0.2 mm and narrow (5-10 {mu}m) rim, the performance of gain versus high voltage with different gas mixtures have been studied using 5.9 keV X-rays. In general, a gain of around 3times10^3 was obtained with a single board in Ar/iC4H10, and gains higher than 10^4 were obtained in Ne mixture at lower voltage. The dependence of the energy resolution on the drift and induction electric fields was measured and an energy resolution of 15.9% was obtained. A curved thinner-THGEM chamber with one-dimensional readout has been assembled for use in the diffraction studies at the Beijing Synchrotron Radiation Facility (BSRF). A cosmic-ray muon hodoscope based on thinner-THGEM was developed as a teaching experiment for the Graduate University of the Chinese Academy of Sciences (GUCAS).
The backbending phenomenon in $^{48}$Cr has been investigated using the recently developed Projected Configuration Interaction (PCI) method, in which the deformed intrinsic states are directly associated with shell model (SM) wavefunctions. Two previous explanations, (i) $K=0$ band crossing, and (ii) $K=2$ band crossing have been reinvestigated using PCI, and it was found that both explanations can successfully reproduce the experimental backbending. The PCI wavefunctions in the pictures of $K=0$ band crossing and $K=2$ band crossing are highly overlapped. We conclude that there are no unique intrinsic states associated with the yrast states after backbending in $^{48}$Cr.
We demonstrate that the extension of the Zee-Babu model can generate not only the small neutrino masses but also the baryon number asymmetry in the universe. In particular, we show that the scale of the singlet scalar responsible for the leptogenesis can be of order 1 TeV, that can be tested at the LHC and ILC. We also considered the possible minimal extension of this model to generate the dark matter.
90 - L. S. Li , X. S. Chen 2008
The phase transition of hard-sphere Heisenberg and Neutral Hard spheres mixture fluids has been investigated with the density functional theory in mean-field approximation (MF). The matrix of second derivatives of the grand canonical potential $Omega$ with respect to the total density, concentration, and the magnetization fluctuations has been investigated and diagonalized. The zero of the smallest eigenvalue $lambda_s$ signalizes the phase instability and the related eigenvector $textbf{x}_s$ characterizes this phase transition. We find a Curie line where the order parameter is pure magnetization and a mixed spinodal where the order parameter is a mixture of total density, concentration, and magnetization. Although in the fixed total number density or temperature sections the obtained spinodal diagrams are quite similar topology, the predominant phase instabilities are considerable different by analyzing $textbf{x}_s$ in density-concentration-magnetization fluctuations space. Furthermore the spinodal diagrams in the different fixed concentration are topologically different.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا