Do you want to publish a course? Click here

A Cold Atomic Beam Interferometer

109   0   0.0 ( 0 )
 Added by Yanying Feng
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate an atom interferometer that uses a laser-cooled continuous beam of $^{87}$Rb atoms having velocities of 10--20 m/s. With spatially separated Raman beams to coherently manipulate the atomic wave packets, Mach--Zehnder interference fringes are observed at an interference distance of 2L = 19 mm. The apparatus operates within a small enclosed area of 0.07 mm$^2$ at a bandwidth of 190 Hz with a deduced sensitivity of $7.8times10^{-5}$ rad/s/$sqrt{{Hz}}$ for rotations. Using a low-velocity continuous atomic source in an atom interferometer enables high sampling rates and bandwidths without sacrificing sensitivity and compactness, which are important for applications in real dynamic environments.



rate research

Read More

176 - A. Gauguet 2009
We present the full evaluation of a cold atom gyroscope based on atom interferometry. We have performed extensive studies to determine the systematic errors, scale factor and sensitivity. We demonstrate that the acceleration noise can be efficiently removed from the rotation signal allowing to reach the fundamental limit of the quantum projection noise for short term measurements. The technical limits to the long term sensitivity and accuracy have been identified, clearing the way for the next generations of ultra-sensitive atom gyroscopes.
A versatile miniature de Broglie waveguide is formed by two parallel current-carrying wires in the presence of a uniform bias field. We derive a variety of analytical expressions to describe the guide and present a quantum theory to show that it offers a remarkable range of possibilities for atom manipulation on the sub-micron scale. These include controlled and coherent splitting of the wavefunction as well as cooling, trapping and guiding. In particular we discuss a novel microscopic atom interferometer with the potential to be exceedingly sensitive.
The extreme miniaturization of a cold-atom interferometer accelerometer requires the development of novel technologies and architectures for the interferometer subsystems. We describe several component technologies and a laser system architecture to enable a path to such miniaturization. We developed a custom, compact titanium vacuum package containing a microfabricated grating chip for a tetrahedral grating magneto-optical trap (GMOT) using a single cooling beam. The vacuum package is integrated into the optomechanical design of a compact cold-atom sensor head with fixed optical components. In addition, a multichannel laser system driven by a single seed laser has been implemented with time-multiplexed frequency shifting using single sideband modulators, reducing the number of optical channels connected to the sensor head. This laser system architecture is compatible with a highly miniaturized photonic integrated circuit approach, and by demonstrating atom-interferometer operation with this laser system, we show feasibility for the integrated photonic approach. In the compact sensor head, sub-Doppler cooling in the GMOT produces 15 uK temperatures, which can operate at a 20 Hz data rate for the atom interferometer sequence. After validating atomic coherence with Ramsey interferometry, we demonstrate a light-pulse atom interferometer in a gravimeter configuration without vibration isolation for 10 Hz measurement cycle rate and T = 0 - 4.5 ms interrogation time, resulting in $Delta$g / g = 2.0e-6. All these efforts demonstrate progress towards deployable cold-atom inertial sensors under large amplitude motional dynamics.
Employing a two-stage cryogenic buffer gas cell, we produce a cold, hydrodynamically extracted beam of calcium monohydride molecules with a near effusive velocity distribution. Beam dynamics, thermalization and slowing are studied using laser spectroscopy. The key to this hybrid, effusive-like beam source is a slowing cell placed immediately after a hydrodynamic, cryogenic source [Patterson et al., J. Chem. Phys., 2007, 126, 154307]. The resulting CaH beams are created in two regimes. One modestly boosted beam has a forward velocity of vf = 65 m/s, a narrow velocity spread, and a flux of 10^9 molecules per pulse. The other has the slowest forward velocity of vf = 40 m/s, a longitudinal temperature of 3.6 K, and a flux of 5x10^8 molecules per pulse.
We demonstrate the enhancement and optimization of a cold strontium atomic beam from a two-dimensional magneto-optical trap (2D-MOT) transversely loaded from a collimated atomic beam by adding a sideband frequency to the cooling laser. The parameters of the cooling and sideband beams were scanned to achieve the maximum atomic beam flux and compared with Monte Carlo simulations. We obtained a 2.3 times larger, and 4 times brighter, atomic flux than a conventional, single-frequency 2D-MOT, for a given total power of 200 mW. We show that the sideband-enhanced 2D-MOT can reach the loading rate performances of space demanding Zeeman slower-based systems, while it can overcome systematic effects due to thermal beam collisions and hot black-body radiation shift, making it suitable for both transportable and accurate optical lattice clocks. Finally we numerically studied the possible extensions of the sideband-enhanced 2D-MOT to other alkaline-earth species.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا