Do you want to publish a course? Click here

Characterization of phase transition in Heisenberg mixtures from density functional theory

139   0   0.0 ( 0 )
 Added by Li Liangsheng
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The phase transition of hard-sphere Heisenberg and Neutral Hard spheres mixture fluids has been investigated with the density functional theory in mean-field approximation (MF). The matrix of second derivatives of the grand canonical potential $Omega$ with respect to the total density, concentration, and the magnetization fluctuations has been investigated and diagonalized. The zero of the smallest eigenvalue $lambda_s$ signalizes the phase instability and the related eigenvector $textbf{x}_s$ characterizes this phase transition. We find a Curie line where the order parameter is pure magnetization and a mixed spinodal where the order parameter is a mixture of total density, concentration, and magnetization. Although in the fixed total number density or temperature sections the obtained spinodal diagrams are quite similar topology, the predominant phase instabilities are considerable different by analyzing $textbf{x}_s$ in density-concentration-magnetization fluctuations space. Furthermore the spinodal diagrams in the different fixed concentration are topologically different.



rate research

Read More

542 - Chang-You Lin , Michael Widom , 2013
We investigate generalized potentials for a mean-field density functional theory of a three-phase contact line. Compared to the symmetrical potential introduced in our previous article [1], the three minima of these potentials form a small triangle located arbitrarily within the Gibbs triangle, which is more realistic for ternary fluid systems. We multiply linear functions that vanish at edges and vertices of the small triangle, yielding potentials in the form of quartic polynomials. We find that a subset of such potentials has simple analytic far-field solutions, and is a linear transformation of our original potential. By scaling, we can relate their solutions to those of our original potential. For special cases, the lengths of the sides of the small triangle are proportional to the corresponding interfacial tensions. For the case of equal interfacial tensions, we calculate a line tension that is proportional to the area of the small triangle.
A mean-field density-functional model for three-phase equilibria in fluids (or other soft condensed matter) with two spatially varying densities is analyzed analytically and numerically. The interfacial tension between any two out of three thermodynamically coexisting phases is found to be captured by a surprisingly simple analytic expression that has a geometric interpretation in the space of the two densities. The analytic expression is based on arguments involving symmetries and invariances. It is supported by numerical computations of high precision and it agrees with earlier conjectures obtained for special cases in the same model. An application is presented to three-phase equilibria in the vicinity of a tricritical point. Using the interfacial tension expression and employing the field variables compatible with tricritical point scaling, the expected mean-field critical exponent is derived for the vanishing of the critical interfacial tension as a function of the deviation of the noncritical interfacial tension from its limiting value, upon approach to a critical endpoint in the phase diagram. The analytic results are again confirmed by numerical computations of high precision.
236 - James F. Lutsko 2021
Classical density functional theory for finite temperatures is usually formulated in the grand-canonical ensemble where arbitrary variations of the local density are possible. However, in many cases the systems of interest are closed with respect to mass, e.g. canonical systems with fixed temperature and particle number. Although the tools of standard, grand-canonical density functional theory are often used in an ad hoc manner to study closed systems, their formulation directly in the canonical ensemble has so far not been known. In this work, the fundamental theorems underlying classical DFT are revisited and carefully compared in the two ensembles showing that there are only trivial formal differences. The practicality of DFT in the canonical ensemble is then illustrated by deriving the exact Helmholtz functional for several systems: the ideal gas, certain restricted geometries in arbitrary numbers of dimensions and finally a system of two hard-spheres in one dimension (hard rods) in a small cavity. Some remarkable similarities between the ensembles are apparent even for small systems with the latter showing strong echoes of the famous exact of result of Percus in the grand-canonical ensemble.
100 - M. Maeritz , M. Oettel 2021
We construct a density functional for the lattice gas / Ising model on square and cubic lattices based on lattice fundamental measure theory. In order to treat the nearest-neighbor attractions between the lattice gas particles, the model is mapped to a multicomponent model of hard particles with additional lattice polymers where effective attractions between particles arise from the depletion effect. The lattice polymers are further treated via the introduction of polymer clusters (labelled by the numbers of polymer they contain) such that the model becomes a multicomponent model of particles and polymer clusters with nonadditive hard interactions. The density functional for this nonadditive hard model is constructed with lattice fundamental measure theory. The resulting bulk phase diagram recovers the Bethe-Peierls approximation and planar interface tensions show a considerable improvement compared to the standard mean-field functional and are close to simulation results in three dimensions. We demonstrate the existence of planar interface solutions at chemical potentials away from coexistence when the equimolar interface position is constrained to arbitrary real values.
227 - Vicente Garzo 2007
Many features of granular media can be modelled as a fluid of hard spheres with {em inelastic} collisions. Under rapid flow conditions, the macroscopic behavior of grains can be described through hydrodynamic equations. At low-density, a fundamental basis for the derivation of the hydrodynamic equations and explicit expressions for the transport coefficients appearing in them is provided by the Boltzmann kinetic theory conveniently modified to account for inelastic binary collisions. The goal of this chapter is to give an overview of the recent advances made for binary granular gases by using kinetic theory tools. Some of the results presented here cover aspects such as transport properties, energy nonequipartition, instabilities, segregation or mixing, non-Newtonian behavior, .... In addition, comparison of the analytical results with those obtained from Monte Carlo and molecular dynamics simulations is also carried out, showing the reliability of kinetic theory to describe granular flows even for strong dissipation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا