Do you want to publish a course? Click here

For a nonsingular projective 3-fold $X$, we define integer invariants virtually enumerating pairs $(C,D)$ where $Csubset X$ is an embedded curve and $Dsubset C$ is a divisor. A virtual class is constructed on the associated moduli space by viewing a pair as an object in the derived category of $X$. The resulting invariants are conjecturally equivalent, after universal transformations, to both the Gromov-Witten and DT theories of $X$. For Calabi-Yau 3-folds, the latter equivalence should be viewed as a wall-crossing formula in the derived category. Several calculations of the new invariants are carried out. In the Fano case, the local contributions of nonsingular embedded curves are found. In the local toric Calabi-Yau case, a completely new form of the topological vertex is described. The virtual enumeration of pairs is closely related to the geometry underlying the BPS state counts of Gopakumar and Vafa. We prove that our integrality predictions for Gromov-Witten invariants agree with the BPS integrality. Conversely, the BPS geometry imposes strong conditions on the enumeration of pairs.
We define the BPS invariants of Gopakumar-Vafa in the case of irreducible curve classes on Calabi-Yau 3-folds. The main tools are the theory of stable pairs in the derived category and Behrends constructible function approach to the virtual class. We prove that for irreducible classes the stable pairs generating function satisfies the strong BPS rationality conjectures. We define the contribution of each curve to the BPS invariants. A curve $C$ only contributes to the BPS invariants in genera lying between the geometric genus and arithmetic genus of $C$. Complete formulae are derived for nonsingular and nodal curves. A discussion of primitive classes on K3 surfaces from the point of view of stable pairs is given in the Appendix via calculations of Kawai-Yoshioka. A proof of the Yau-Zaslow formula for rational curve counts is obtained. A connection is made to the Katz-Klemm-Vafa formula for BPS counts in all genera.
Let S be a nonsingular projective K3 surface. Motivated by the study of the Gromov-Witten theory of the Hilbert scheme of points of S, we conjecture a formula for the Gromov-Witten theory (in all curve classes) of the Calabi-Yau 3-fold S x E where E is an elliptic curve. In the primitive case, our conjecture is expressed in terms of the Igusa cusp form chi_{10} and matches a prediction via heterotic duality by Katz, Klemm, and Vafa. In imprimitive cases, our conjecture suggests a new structure for the complete theory of descendent integration for K3 surfaces. Via the Gromov-Witten/Pairs correspondence, a conjecture for the reduced stable pairs theory of S x E is also presented. Speculations about the motivic stable pairs theory of S x E are made. The reduced Gromov-Witten theory of the Hilbert scheme of points of S is much richer than S x E. The 2-point function of Hilb(S,d) determines a matrix with trace equal to the partition function of S x E. A conjectural form for the full matrix is given.
The Katz-Klemm-Vafa conjecture expresses the Gromov-Witten theory of K3 surfaces (and K3-fibred 3-folds in fibre classes) in terms of modular forms. Its recent proof gives the first non-toric geometry in dimension greater than 1 where Gromov-Witten theory is exactly solved in all genera. We survey the various steps in the proof. The MNOP correspondence and a new Pairs/Noether-Lefschetz correspondence for K3-fibred 3-folds transform the Gromov-Witten problem into a calculation of the full stable pairs theory of a local K3-fibred 3-fold. The stable pairs calculation is then carried out via degeneration, localisation, vanishing results, and new multiple cover formulae.
We prove the KKV conjecture expressing Gromov-Witten invariants of K3 surfaces in terms of modular forms. Our results apply in every genus and for every curve class. The proof uses the Gromov-Witten/Pairs correspondence for K3-fibered hypersurfaces of dimension 3 to reduce the KKV conjecture to statements about stable pairs on (thickenings of) K3 surfaces. Using degeneration arguments and new multiple cover results for stable pairs, we reduce the KKV conjecture further to the known primitive cases. Our results yield a new proof of the full Yau-Zaslow formula, establish new Gromov-Witten multiple cover formulas, and express the fiberwise Gromov-Witten partition functions of K3-fibered 3-folds in terms of explicit modular forms.
We prove an explicit formula for the total Chern character of the Verlinde bundle over the moduli space of pointed stable curves in terms of tautological classes. The Chern characters of the Verlinde bundles define a semisimple CohFT (the ranks, given by the Verlinde formula, determine a semisimple fusion algebra). According to Telemans classification of semisimple CohFTs, there exists an element of Giventals group transforming the fusion algebra into the CohFT. We determine the element using the first Chern class of the Verlinde bundle on the moduli space of nonsingular curves and the projective flatness of the Hitchin connection.
Noether-Lefschetz divisors in the moduli of K3 surfaces are the loci corresponding to Picard rank at least 2. We relate the degrees of the Noether-Lefschetz divisors in 1-parameter families of K3 surfaces to the Gromov-Witten theory of the 3-fold total space. The reduced K3 theory and the Yau-Zaslow formula play an important role. We use results of Borcherds and Kudla-Millson for O(2,19) lattices to determine the Noether-Lefschetz degrees in classical families of K3 surfaces of degrees 2, 4, 6 and 8. For the quartic K3 surfaces, the Noether-Lefschetz degrees are proven to be the Fourier coefficients of an explicitly computed modular form of weight 21/2 and level 8. The interplay with mirror symmetry is discussed. We close with a conjecture on the Picard ranks of moduli spaces of K3 surfaces.
We prove the rationality of the descendent partition function for stable pairs on nonsingular toric 3-folds. The method uses a geometric reduction of the 2- and 3-leg descendent vertices to the 1-leg case. As a consequence, we prove the rationality of the relative stable pairs partition functions for all log Calabi-Yau geometries of the form (X,K3) where X is a nonsingular toric 3-fold.
314 - D. Maulik , R. Pandharipande , 2010
We study the virtual geometry of the moduli spaces of curves and sheaves on K3 surfaces in primitive classes. Equivalences relating the reduced Gromov-Witten invariants of K3 surfaces to characteristic numbers of stable pairs moduli spaces are proven. As a consequence, we prove the Katz-Klemm-Vafa conjecture evaluating $lambda_g$ integrals (in all genera) in terms of explicit modular forms. Indeed, all K3 invariants in primitive classes are shown to be governed by modular forms. The method of proof is by degeneration to elliptically fibered rational surfaces. New formulas relating reduced virtual classes on K3 surfaces to standard virtual classes after degeneration are needed for both maps and sheaves. We also prove a Gromov-Witten/Pairs correspondence for toric 3-folds. Our approach uses a result of Kiem and Li to produce reduced classes. In Appendix A, we answer a number of questions about the relationship between the Kiem-Li approach, traditional virtual cycles, and symmetric obstruction theories. The interplay between the boundary geometry of the moduli spaces of curves, K3 surfaces, and modular forms is explored in Appendix B by A. Pixton.
The Yau-Zaslow conjecture determines the reduced genus 0 Gromov-Witten invariants of K3 surfaces in terms of the Dedekind eta function. Classical intersections of curves in the moduli of K3 surfaces with Noether-Lefschetz divisors are related to 3-fold Gromov-Witten theory via the K3 invariants. Results by Borcherds and Kudla-Millson determine the classical intersections in terms of vector-valued modular forms. Proven mirror transformations can often be used to calculate the 3-fold invariants which arise. Via a detailed study of the STU model (determining special curves in the moduli of K3 surfaces), we prove the Yau-Zaslow conjecture for all curve classes on K3 surfaces. Two modular form identities are required. The first, the Klemm-Lerche-Mayr identity relating hypergeometric series to modular forms after mirror transformation, is proven here. The second, the Harvey-Moore identity, is proven by D. Zagier and presented in the paper.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا