No Arabic abstract
Noether-Lefschetz divisors in the moduli of K3 surfaces are the loci corresponding to Picard rank at least 2. We relate the degrees of the Noether-Lefschetz divisors in 1-parameter families of K3 surfaces to the Gromov-Witten theory of the 3-fold total space. The reduced K3 theory and the Yau-Zaslow formula play an important role. We use results of Borcherds and Kudla-Millson for O(2,19) lattices to determine the Noether-Lefschetz degrees in classical families of K3 surfaces of degrees 2, 4, 6 and 8. For the quartic K3 surfaces, the Noether-Lefschetz degrees are proven to be the Fourier coefficients of an explicitly computed modular form of weight 21/2 and level 8. The interplay with mirror symmetry is discussed. We close with a conjecture on the Picard ranks of moduli spaces of K3 surfaces.
We conjecture an equivalence between the Gromov-Witten theory of 3-folds and the holomorphic Chern-Simons theory of Donaldson-Thomas. For Calabi-Yau 3-folds, the equivalence is defined by the change of variables, exp(iu)=-q, where u is the genus parameter of GW theory and q is charge parameter of DT theory. The conjecture is proven for local Calabi-Yau toric surfaces.
We discuss the GW/DT correspondence for 3-folds in both the absolute and relative cases. Descendents in Gromov-Witten theory are conjectured to be equivalent to Chern characters of the universal sheaf in Donaldson-Thomas theory. Relative constraints in Gromov-Witten theory are conjectured to correspond in Donaldson-Thomas theory to cohomology classes of the Hilbert scheme of points of the relative divisor. Independent of the conjectural framework, we prove degree 0 formulas for the absolute and relative Donaldson-Thomas theories of toric varieties.
Let $Z$ be a closed subscheme of a smooth complex projective complete intersection variety $Ysubseteq Ps^N$, with $dim Y=2r+1geq 3$. We describe the Neron-Severi group $NS_r(X)$ of a general smooth hypersurface $Xsubset Y$ of sufficiently large degree containing $Z$.
Let $Z$ be a closed subscheme of a smooth complex projective variety $Ysubseteq Ps^N$, with $dim,Y=2r+1geq 3$. We describe the intermediate Neron-Severi group (i.e. the image of the cycle map $A_r(X)to H_{2r}(X;mathbb{Z})$) of a general smooth hypersurface $Xsubset Y$ of sufficiently large degree containing $Z$.
We use a topological framework to study descendent Gromov-Witten theory in higher genus, non-toric settings. Two geometries are considered: surfaces of general type and the Enriques Calabi-Yau threefold. We conjecture closed formulas for surfaces of general type in classes K and 2K. For the Enriques Calabi-Yau, Gromov-Witten invariants are calculated in genus 0, 1, and 2. In genus 2, the holomorphic anomaly equation is found.